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A B S T R A C T   

Promoting urban vibrancy is one of the major objectives of urban planners and government officials, and it is 
linked to various benefits, such as urban prosperity and human well-being. There is ample evidence that built 
environment characteristics are associated with urban vibrancy; however, the spatiotemporal associations be
tween built environment and urban vibrancy have not been fully investigated owing to the inherent limitations of 
traditional data. To address this gap, we measured spatiotemporal urban vibrancy in Shenzhen, China, using 
Tencent location-based big data, which is characterized by fine-grained population-level spatiotemporal gran
ularity. Built environment characteristics were systematically measured using the 5D framework (density, di
versity, design, destination accessibility, and distance to transit) with multi-source datasets. We investigated the 
spatiotemporal non-stationary associations using a geographically and temporally weighted regression (GTWR) 
model. The results indicated that the GTWR models achieved better goodness-of-fit than linear regression 
models. Built environment factors such as population density; point of interest (POI) mix; residential, com
mercial, company, and public service POI; and metro station were significantly associated with urban vibrancy. 
Time series clustering revealed spatiotemporal clustered patterns of the associations between built environment 
factors and urban vibrancy. To promote urban vibrancy with urban planning and design strategies, both the 
spatial and temporal associations between the built environment and urban vibrancy should be considered.   

1. Introduction 

Urban vibrancy has become increasingly important in urban plan
ning owing to its positive impacts on the economy, livability, and sus
tainability of cities (Botta & Gutiérrez-Roig, 2021; Chen, Hui, Wu, Lang, 
& Li, 2019; Huang et al., 2019; Montgomery, 1998; Wu, Ta, Song, Lin, & 
Chai, 2018). Promoting vibrancy has received substantial attention 
because of the decline of many large cities worldwide since the 1960s 
(Li, Li, Jia, Zhou, & Hijazi, 2021; Zhang et al., 2020). The concept of 
urban vibrancy, also referred to urban vitality, was first proposed by 
Jane Jacobs in her book “The Death and Life of Great American Cities” who 
argued that urban vibrancy promotes active street activity and human 
interactions, thereby promoting social life (Jacobs, 1961). Higher 
vibrancy in urban space can enhance resident’s well-being, sense of 
community, safety, and opportunity (Delclòs-Alió, Gutiérrez, & 
Miralles-Guasch, 2019; Liu, Huang, Li, & Wang, 2021; Marquet & 
Miralles-Guasch, 2015). Promoting urban vibrancy may also stimulate 

knowledge diffusion, economic growth, sustainable mobility, and social 
interaction in cities (Botta & Gutiérrez-Roig, 2021; Chen, Dong, Pei, & 
Zhang, 2022; Mouratidis & Poortinga, 2020). 

Scholars have pinpointed the role of the built environment in urban 
design for street activity and urban vibrancy (Ewing & Cervero, 2010; 
Forsyth, Oakes, Schmitz, & Hearst, 2007; Jacobs, 1961; Saelens & 
Handy, 2008; Sallis et al., 2016). They argue that urban environment 
characteristics such as appropriate density, mixed land use, small blocks, 
and safety should be good features to promote urban vibrancy (Jacobs, 
1961; Lynch, 1984). Empirical evidence has confirmed that urban 
vibrancy is related to built environment factors such as density (e.g., 
population or building density), diversity (e.g., land use mix, functional 
mix), and accessibility (e.g., street network, public transport) (Botta & 
Gutiérrez-Roig, 2021; Delclòs-Alió et al., 2019; Huang et al., 2019; Li, 
Liu, Lin, Xiao, & Zhou, 2021; Xia, Yeh, & Zhang, 2020). Therefore, 
investigating the association between built environment characteristics 
and urban vibrancy is rewarding for urban planning to formulate 
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development strategies. 
Urban vibrancy is often directly assessed in terms of the intensity of 

all types of human activities on various times at the population level 
besides walking behaviors (Botta & Gutiérrez-Roig, 2021; Chen et al., 
2019; Wu, Ta, et al., 2018). Human activity intensity is generally 
measured via two approaches: small data collected by survey or field 
observation, and location-based big data. Small data can only measure 
human activity intensity in limited areas, such as residential neighbor
hoods (Delclòs-Alió et al., 2019; Sung & Lee, 2015), and thus are not 
suitable for investigating urban vibrancy within a large geographic area 
with detailed population-level spatial and temporal granularity (Huang 
et al., 2019; Wu, Ye, Ren, & Du, 2018). Big data are characterized by 
spatiotemporal details and can thus overcome the shortcomings of small 
data. However, most studies on vibrancy have ignored the relevant 
spatiotemporal characteristics. Spatiotemporal dynamics is essential to 
urban vibrancy because both spatial and temporal uncertainty could 
exert contextual influences (Kwan, 2012). That is, a spatiotemporal non- 
stationary association exists between the contextual factors and human 
activity intensity. 

Location-based spatiotemporal big data provide a new lens for urban 
vibrancy measurement. For instance, the Tencent location big data, 
officially released in 2015, capture real-time user location information 
for all major cities in China. The dataset has unprecedented user 
coverage and fine-grained spatiotemporal granularity. To address the 
abovementioned research gaps, this study used Tencent location data to 
measure human activity intensity as a proxy for urban vibrancy. More
over, the spatiotemporal pattern between built environment character
istics and urban vibrancy was investigated in the context of China’s 
cities. 

2. Literature review 

2.1. Urban vibrancy and its importance 

In recent decades, urbanization has rapidly increased worldwide, 
and it is projected that over 70% of the population will be living in urban 
areas by 2050 (United Nations, 2018). However, there are several 
problems associated with this rapid urbanization, including urban 
sprawl; the deterioration of living environments; and the prevalence of 
the physical inactivity of urban residents, all of which hinder the sus
tainable development goals of cities (Kohl et al., 2012; Zhang et al., 
2020; Zumelzu & Barrientos-Trinanes, 2019). Most of China’s large 
cities share some typical characteristics of rapid urbanization, such as 
high density, economy-oriented lifestyle, low-quality sprawl, job- 
housing mismatch, and the prevalence of bedroom communities, while 
urban vitality has not received sufficient attention (Li, Li, et al., 2021; 
Wu, Lu, Gao, & Wang, 2022; Ye, Li, & Liu, 2018; Yue & Zhu, 2019; 
Zhang et al., 2020). Urban planners and scholars have emphasized the 
importance of urban vibrancy to promote human interactions in urban 
spaces for the social stability and economic prosperity of cities. 

Urban vibrancy was first proposed by Jacobs, who claimed that a 
lively environment boosts active living and street vitality (Jacobs, 
1961). Some scholars have characterized urban vibrancy in terms of the 
presence of people on streets and public spaces, human activities and 
opportunities, and the diversity of the built environment (e.g., dense 
urban development, mixed land use, small block, aged building) 
(Gómez-Varo, Delclòs-Alió, & Miralles-Guasch, 2022; Jacobs, 1961; 
Lynch, 1984; Wu, Ta, et al., 2018; Zumelzu & Barrientos-Trinanes, 
2019). Some scholars have also defined vibrancy from the perspec
tives of survival (e.g., quality of water, air, and food); security (e.g., 
against fear, disease, and risk), and adaptability (e.g., human body 
needs, visual characteristics) of urban spaces that support urban oper
ations, biological conditions, and human abilities (Lynch, 1984; Zarin, 
Niroomand, & Heidari, 2015). Recent decade, urban vibrancy is often 
quantified in terms of the presence of desirable and attractive urban 
spaces that have the capacity to stimulate a variety of location-based 

human activities (Wu, Ta, et al., 2018; Wu, Ye, et al., 2018). Places 
with high degrees of urban vibrancy help to foster a strong sense of place 
reflected in active living, physical activity, human interaction, and place 
attachment (Jacobs, 1961; Li, Li, et al., 2021; Montgomery, 1998; 
Mouratidis & Poortinga, 2020; Zumelzu & Barrientos-Trinanes, 2019). 
Vibrant urban environment is able to accommodate various human 
behaviors and sufficient urban social and economic activities (Chen 
et al., 2022; Huang et al., 2019; Jia, Liu, Du, Huang, & Fei, 2021; Jin 
et al., 2017). 

2.2. Urban vibrancy assessment 

Despite the different definitions of urban vibrancy, there is a basic 
consensus that urban vibrancy arises from well-designed urban envi
ronments that stimulate human interaction and activity. Hence, urban 
vibrancy is assessed by either the built environment metrics (Delclòs- 
Alió & Miralles-Guasch, 2018; He et al., 2018; Yue et al., 2021; Zarin 
et al., 2015), or human activity intensity (Chen et al., 2019; Kim, 2018; 
Liu, Zhang, & Long, 2019; Yue et al., 2017), or a combination of both 
(Jin et al., 2017; Tu et al., 2020). 

Some studies have evaluated urban vibrancy via objective or sub
jective assessment of built environment characteristics. For instance, 
urban vibrancy was assessed based on Jane Jacobs’ ideas considering six 
conditions that are concentration, functional diversity, contact oppor
tunity, aged buildings, accessibility and border vacuums in Barcelona, 
Spain (Delclòs-Alió & Miralles-Guasch, 2018; Gómez-Varo et al., 2022). 
One study in China assessed urban vibrancy in terms of the density of 
small catering businesses (Ye et al., 2018). Using a questionnaire, 
another study in Tehran, Iran, assessed urban vibrancy in terms of the 
self-rated variety of destinations; availability; and the levels of contact, 
safety, pollution, and aesthetics of the built environment (Zarin et al., 
2015). Another study assessed urban vibrancy on the basis of the density 
of points of interest (POIs) and the functional mix in several Chinese 
cities (He et al., 2018). However, the approach based on built environ
ment metrics can only evaluate the potential of urban vibrancy rather 
than the actual human activity intensity. 

Several studies have measured urban vibrancy in terms of human 
activity intensity using both small and big data (Chen et al., 2019; 
Huang et al., 2019; Sung & Lee, 2015). Small data used for measuring 
urban vibrancy are usually obtained through surveys (Marquet & 
Miralles-Guasch, 2015; Sallis et al., 2016; Sung & Lee, 2015), or field 
observations (Zumelzu & Barrientos-Trinanes, 2019). However, small 
data collection through surveys is labor-intensive, and the data are 
heterogeneous. Big data for measuring urban vibrancy are in the forms 
of mobile phone data (Botta & Gutiérrez-Roig, 2021; Wu & Niu, 2019), 
social media data (Chen et al., 2019; Lu, Shi, & Yang, 2019; Wu, Ye, 
et al., 2018; Yue & Zhu, 2019), heat map (Fan et al., 2021), Wi-Fi access 
(Kim, 2018), and multi-source big data (Guo, Chen, & Yang, 2021; 
Huang et al., 2019; Kang, Fan, & Jiao, 2020; Li, Liu, et al., 2021). For 
instance, Huang et al. (2019) assessed urban vibrancy by social activity 
intensity, economic activity intensity, and pedestrian density using 
multi-source big data such as social media check-in and GPS positioning 
data. The big data of human activities are considered a valid proxy for 
urban vibrancy (Botta & Gutiérrez-Roig, 2021; Huang et al., 2019; Wu, 
Ye, et al., 2018). 

According to such principles, some studies have measured urban 
vibrancy by considering both built environment characteristics and 
human activity. For instance, Jin et al. (2017) evaluated vitality by 
street intersection density, POI density, and location-based big data. Tu 
et al. (2020) described the spatial characteristics of urban vibrancy using 
POI density, social media check-ins, and mobile phone records. 

2.3. Built environment and urban vibrancy 

Moreover, some scholars have claimed the conceivable linkages be
tween the built environment and urban vibrancy (i.e., human activity 
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intensity). Jacobs (1961) discussed that there are four important factors 
that boost urban vibrancy including compactness, mixed land use, small 
street block, and rich historical building. Lynch (1984) considered that a 
good urban form supports people’s lives and needs. Katz, Scully, and 
Bressi (1994) stated out that compactness, walking scale, mixed land 
use, and appropriate building density are important factors that impact 
urban vibrancy. Montgomery (1998) commented that urban vibrancy is 
more related to the features of public open space such as greenery and 
water, mixed land use, and pedestrian accessibility. 

Strong evidence has confirmed that the built environment consid
erably influences urban vibrancy (Liu et al., 2021; Meng & Xing, 2019; 
Saelens & Handy, 2008; Jiang et al., 2021; Sung and Lee, 2015). The 
built environment is usually assessed using the D variables: density, 
diversity, design, destination accessibility, and distance to transit; these 
factors can directly influence vitality. For instance, the density and land 
use mix of the built environment are strongly associated with vitality 
(Delclòs-Alió et al., 2019; Huang et al., 2019; Lu et al., 2019; Wu et al., 
2022; Yue et al., 2017). Huang et al. (2019) found that building density, 
density and mixture of urban functions, accessibility, and walkability 
were associated with urban vibrancy in Shanghai, China. Tu et al. (2020) 
assessed urban vibrancy using multi-source big data and found that 
employment density, land use mix, street density, and metro station 
were associated with urban vitality in Shenzhen, China. Other studies 
have also found that street accessibility, walkability, and 
pedestrian-friendly street environment are important factors influencing 
urban vibrancy (Huang et al., 2019; Lu et al., 2019; Sung & Lee, 2015; 
Wu, Ye, et al., 2018). The use of public green spaces can also positively 
influence vitality (Lopes & Camanho, 2013). Some studies have sug
gested that urban spatial structure and urban form are associated with 
urban vibrancy (Chen et al., 2019; Meng & Xing, 2019; Xia, Zhang, & 
Yeh, 2021; Yue et al., 2021; Zumelzu & Barrientos-Trinanes, 2019). 

2.4. Research gaps 

Despite the numerous studies on urban vibrancy, major research 
gaps still exist. Findings on the association between the built environ
ment and urban vibrancy are inconclusive. For instance, some studies 
have found that functional diversity is positively related to urban 
vibrancy (Wu, Ta, et al., 2018; Yue et al., 2017; Zumelzu & Barrientos- 
Trinanes, 2019), while such a relationship was not found in others 
(Nadai et al., 2016; Sallis et al., 2016). Similarly, some studies have 
found a positive relationship between transportation accessibility and 
urban vibrancy (Huang et al., 2019; Lu et al., 2019), while others have 
not (Sallis et al., 2016; Wu, Ta, et al., 2018). 

The inconsistency in the findings is largely caused by the differences 
among the urban vibrancy measurement approaches in different city 
contexts. As mentioned earlier, both small data and big data can be used 
to access human activity intensity. The small data approach is labor- 
intensive and characterized by data heterogeneity (owing to limited 
samples, a rough spatial scale, and limited cross-sectional data) (Huang 
et al., 2019; Wu, Ye, et al., 2018). Thus, the small data approach is prone 
to the uncertain geographic context problem (Kwan, 2012) and the 
modifiable areal unit problem (Wong, 2004) which might cause bias. 

Big data provide a feasible approach to assess human activity using 
population-level sample size with spatiotemporal information. Hence, 
big data approaches can partly eliminate the limitations of small data 
approaches (Botta & Gutiérrez-Roig, 2021; Huang et al., 2019; Wu, Ye, 
et al., 2018). Although some studies have measured urban vibrancy 
using big data on a large geographic scale (Huang et al., 2019; Jiang 
et al., 2021; Liu et al., 2021), they have largely neglected the spatio
temporal dynamics of urban vibrancy (Kang et al., 2020; Kim, 2018). A 
few studies have investigated the spatial relationship between the built 
environment and urban vibrancy using location-based big data (Yang, 
Ma, & Jiao, 2021; Zhang et al., 2020), or have considered temporal 
characteristics of urban vibrancy (Guo et al., 2021; Li, Liu, et al., 2021; 
Liu et al., 2021; Wu & Niu, 2019). To the best of our knowledge, only 

one study has explored the spatiotemporal non-stationary relationship 
between urban vibrancy and POI data (Wu, Ye, et al., 2018); however, 
that study used check-in data from a social media platform, which is 
dominated by young users and hence may not be representative of the 
whole population. In summary, the relationship between built envi
ronment characteristics and urban vibrancy in China’s high-density 
cities has not been comprehensively investigated using location-based 
spatiotemporal big data. 

To address these research gaps, in this study, we measured the 
spatiotemporal dynamics of urban vibrancy using real-time Tencent 
location big data in a high-density and economy-oriented city in China. 
Tencent location big data have a large user coverage with a fine 
spatiotemporal granularity at a 1 km × 1 km grid level and one-hour 
time interval. First, we adopted a geographically and temporally 
weighted regression (GTWR) model to investigate the spatiotemporal 
association between the built environment characteristics and dynamic 
urban vibrancy. In addition, we systematically measured the built 
environment from multi-source datasets using the 5D (density, diversity, 
design, destination accessibility, and distance to transit) framework. 
Second, we visualized the spatiotemporal association using a space-time 
cube, which integrated spatial and temporal patterns. Furthermore, we 
conducted time series clustering to classify regional clusters with similar 
spatiotemporal relationships between built environment characteristics 
and urban vibrancy. Exploring such spatiotemporal association can 
elucidate the dynamic, rather than static, impact of the built environ
ment on urban vibrancy, and help government officials and urban 
planners develop evidence-based and targeted interventions to stimulate 
urban vibrancy. 

3. Data and method 

3.1. Study area 

Shenzhen is one of the largest cities in China with a resident popu
lation of 17.56 million in 2020, an area of 1997 km2, and 10 main 
administrative districts (Fig.1). It is a fast-growing city and has been a 
special economic zone since China’s economic reform. Its economy- 
oriented and high-density urban context make it a representative city 
for our study. 

3.2. Dependent variables of urban vibrancy 

Tencent location data were obtained from the Tencent location ser
vice, which is integrated into various Tencent location-based mobile 
phone applications such as WeChat, QQ, Meituan, and Didi (Liu et al., 
2021). In 2016, Tencent announced that its location service is used an 
average of 50 billion times daily, covering 680 million users, making it the 
largest location service provider in China. The Tencent location service 
captures the real-time density of location-sensing events on the basis of 
information obtained from Tencent location-based applications. For 
instance, a person who is walking could be detected by WeChat Move
ment. The characteristics of fine-grained spatiotemporal granularity and 
large population coverage make Tencent location data an excellent in
strument for revealing the real-time intensity of human activity. 

Tencent location data were aggregated at grid-level with 1-km 
spatial resolution. Grids without Tencent data (i.e., mainly forest, or 
other preserved natural areas) in our study area (Shenzhen) during the 
research period were excluded, resulting in 1342 grids. Each grid was 
regarded as an analysis unit. Tencent location data in the form of the 
number of Tencent location-sensing events in each grid were used as the 
proxy for urban vibrancy. The built environment characteristics in each 
unit were correspondingly measured (Fig.1). 

Through the Tencent product application programming interface 
(https://heat.qq.com), we obtained Tencent location data for three 
consecutive holidays (May 2–4, 2019) and three weekdays (May 7–9, 
2019) in our study area. The number of Tencent location-sensing events 
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in each grid was recorded at one- hour interval (i.e., 24 data points for 
each day) in our retrieved dataset. The raw data contained information 
about the number of Tencent location-sensing events, timestamps, and 
the longitude and latitude of each grid (Table 1). To ensure user privacy, 
the raw data did not contain any personal information about the user. 

To explore the differences between weekday and holiday outcomes 
and mitigate potential bias, the average number of Tencent events at 24 
independent timestamps over three days was calculated for weekdays 
and holidays. Hence, weekday and holiday urban vibrancy levels across 
Shenzhen were measured with a spatiotemporal resolution of 1 km × 1 
km grid level and a time interval of one hour. Overall, we measured the 
weekday and holiday urban vibrancy in each grid by summing up the 
average location events at 24-time stamps over three days. 

To validate the accuracy of the Tencent location data at the popu
lation level, we aggregated the Tencent data into the 10 administrative 
districts in Shenzhen, and compared them with the 2018 census popu
lation data. The Pearson correlation coefficients between weekday and 
holiday Tencent data and the census population in the 10 districts 
(observation = 10) were 0.857 (p < 0.001) and 0.832 (p < 0.001) on 
weekday and holiday, respectively. Thus, Tencent location data showed 
high accuracy for measuring the human activity intensity, despite inter- 
district human mobility. 

3.3. Independent variables of the built environment factors 

To quantify the built environment characteristics systematically, our 

study adopted the 5D framework including density, diversity, design, 
destination accessibility, and distance to transit. The 5D framework is a 
widely used evaluation framework to measure the built environment 
characteristics related with travel behaviors and human activities 
(Cervero & Kockelman, 1997; Ewing & Cervero, 2010; Jiang et al., 2021; 
Lu, Chen, Yang and Gou, 2018). We summarized the built environment 
factors considered in our study into the 5D framework. 

We measured built environment characteristics using census data 
and open big data. The geographic census data included population 
density, building blocks, and the street network of Shenzhen. We also 
obtained point of interest (POI) data to measure built environment 
characteristics. POI data are a type of urban big data that can precisely 
reveal the spatial distribution of entities and functional facilities that 
accommodate human activities in an urban environment (He et al., 
2018; Kang et al., 2020; Wu, Ye, et al., 2018). The POI dataset of 2018 
was retrieved from Gaode Map (https://lbs.amap.com/), one of the most 
popular online map services in China. In addition, we measured urban 
greenery by Normalized Difference Vegetation Index (NDVI) using 
remote sensing data. 

Density was measured in terms of population density and building 
density. The population density of each grid was measured using resi
dential population census data. Building density was calculated using 
the total building coverage area (as known as building coverage ratio), 
total building floor area (BFA), and functional floor areas of each grid. 
The floor areas of residential, commercial, office, and industrial build
ings were separately calculated according to building usage (Xia et al., 

Fig. 1. Study area of Shenzhen.  

Table 1 
Raw big data of Tencent location for one day.  

Grid ID Number of the Tencent location events for 24 timestamps Grid coordinates 

00:00 01:00 02:00 03:00 ... 21:00 22:00 23:00 Longitude Latitude 

1 3 0 0 0 ... 0 0 0 113.7348207 22.74283378 
2 18 5 3 0 ... 3 0 0 113.7348274 22.75283075 
3 119 102 55 0 ... 0 0 0 113.7348193 22.76282763 
4 0 166 122 107 ... 256 253 243 113.7348187 22.77282441 
5 0 197 123 99 ... 234 219 0 113.7348187 22.78282111  
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2020). 
Diversity was measured according to building usage mix and POI 

mix. Building usage mix was calculated based on building floor area. The 
raw POI dataset retrieved from Gaode Map had multi-layered categories. 
There is no universal standard to measure urban function by the dataset. 
We resampled key types and reclassified the POI dataset into five urban 
functional categories: residential POI, commercial POI (i.e., catering, 
shopping store), company POI (i.e., company, enterprise, corporation), 
public service POI (i.e., government, hospital, school), and recreational 
POI (i.e., park, square, scenic spot). Diversity was measured using the 
entropy score as follows (Huang et al., 2019; Ye et al., 2018): 

Diversity = −
∑n

i=1
(pilnpi) (1)  

where n denotes to the total types presented, and pi denotes the pro
portion of the i th type. A higher diversity index indicates a higher de
gree of mixed use. 

Design was measured in terms of the street length and street inter
section. Street length was measured as the total length of the street 
network in each grid, while street intersection was the number of street 
intersections in each grid. In addition, the urban greenery level is an 
important indicator that can enhance urban vibrancy (Lopes & 
Camanho, 2013), as areas with greenery allow for social interaction and 
healthy outdoor activity. The NDVI is commonly used for measuring 
urban greenery. The NDVI was calculated using Sentinel remote sensing 
imagery as follows: 

NDVI =
NIR − R
NIR + R

(2)  

where NIR and R denote the reflectance in near-infrared band and red 
band, corresponding to band 8 and band 4 in the Sentinel satellite, 
respectively. 

Destination accessibility was measured using POI datasets. For each 
grid, the number of five urban functional types of POI, including resi
dential, commercial, company, public service, and recreational, were 
calculated as a proxy for accessibility. 

Distance to transit was represented by the number of bus stations, 
and the number of metro stations in each grid. Despite the possible 
ambiguity in the 5D categorizations (e.g., the number of bus stations was 
categorized into distance to transit), the 5D framework enabled us to 
systematically classify built environment characteristics. Finally, 19 
independent variables of built environment characteristics were 
considered. 

3.4. Regression analysis 

Urban vibrancy levels measured using both weekday and holiday 
Tencent location data were considered as distinct outcomes in our study. 
Before implementing regression models, we excluded independent var
iables that failed the multicollinearity test conducted using variance 
inflation factors (VIF >4). Hence, of the built environment factors, total 
building floor area and street length were excluded. All of the variables 
were standardized in the regression analysis. 

First, we used ordinary least squares (OLS) regression to investigate 
the relationships between the built environment and spatiotemporal 
urban vibrancy with 32,208 observations. OLS holds the basic assump
tion that the residual is random and homoscedastic. The OLS model can 
be described as follows: 

y = Xβ+ ε (3)  

where y is the dependent variable, X is the matrix of the independent 
variables, β is a vector of the coefficients, and ε is a vector of random 
error terms. 

Second, we statistically analyzed data with spatial and temporal 

dimensions. To integrate regression analysis with spatial and temporal 
effects, we adopted a geographically and temporally weighted regres
sion (GTWR) model to investigate the association between built envi
ronment characteristics and urban vibrancy. Compared with other 
spatiotemporal models (e.g., the generalized additive model and the 
Bayesian spatiotemporal model), the GTWR model better describes the 
spatiotemporal non-stationary relationship with weighting functions. As 
a temporal extension of geographically weighted regression (Brunsdon, 
Fotheringham, & Charlton, 1996), GTWR introduces a temporal 
dimension into the regression model to investigate the local spatio
temporal parameters (Fotheringham, Crespo, & Yao, 2015; Huang, Wu, 
& Barry, 2010). The GTWR model is expressed as follows: 

yi = β0(ui, vi, ti)+
∑

k
βk(ui, vi, ti)Xik + εi i = 1, 2,……, n (4)  

where yi represents the dependent variable for location i; Xik denotes the 
kth independent variable for location i; (ui, vi, ti) are the space-time 
coordinates of location i in the spatiotemporal observations; ui, vi, ti 
denote longitude, latitude, and time, respectively; β0(ui,vi, ti) denotes the 
intercept value; βk(ui,vi, ti) represents a set of parameter values at loca
tion i. βk(ui,vi, ti) varies in the spatiotemporal space, and the GTWR 
model can simultaneously capture spatiotemporal non-stationarity. 
Local regression coefficients of the GTWR model are estimated on the 
basis of locally weighted least squares. The estimated parameter is 
expressed as follows: 

β(ui, vi, ti) =
[
XT W(ui, vi, ti)X

]− 1XT W(ui, vi, ti)Y (5)  

where the weighting matrix W(ui,vi, ti) is an n × n diagonal matrix and W 
(ui,vi, ti) = diag (Wi1,Wi2…Win). Wij(1 ≤ j ≤ n) is the spatiotemporal 
distance decay function, which is determined by the spatiotemporal 
distance dst and bandwidth h. In this study, a Gaussian kernel function 
was adopted to calculate the spatiotemporal weighting matrix with the 
greatest efficiency as follows: 

Wij = exp
[

−
(

dST
ij

)2
/

h2
]

(6) 

According to (Huang et al., 2010), the spatiotemporal distance is 
calculated as follows: 

dST =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ
[(

ui − uj
)2

−
(
vi − vj

)2
]
+ μ
(
ti − tj

)2
√

(7)  

where h is a nonnegative parameter that produces a decay of influence 
with the spatiotemporal distance dij

ST between locations i and j. W(ui,vi, 
ti) depends on the bandwidth h, and the optimal bandwidth is chosen 
according to the minimum cross-validation value. Finally, we imple
mented the GTWR model in R, using the GWmodel package to process 
spatiotemporal big data (Lu, Harris, Charlton, & Brunsdon, 2014). 

3.5. Spatiotemporal pattern clustering 

Finally, we performed spatiotemporal clustering of local coefficients 
derived from the GTWR model results, using a time series clustering tool 
for a space-time cube in ArcGIS Pro. Each grid has time series values 
with 24 timestamps. We conducted the clustering including two main 
parts to identify grids with similar time series values. First, dynamic time 
warping (DTW) distance (Montero & Vilar, 2014) is used to find the 
mapping r (distance) between the time series that minimizes a specific 
distance measure between the coupled observations (Xai,Ybi). Let M be 
the set of all possible sequences of m pairs preserving the observation 
order in the form. The DTW distance is expressed as: 

r = ((Xa1, Yb1),…, (Xam,Ybm)) (8)  
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dDTW(XT , YT) =
min

r∈M

(
∑

i=1,…,m
| Xai − Ybi |

)

(9) 

Second, after exploring the similarity and difference between time 
series, the grids are clustered using the k-means algorithm (Arthur & 
Vassilvitskii, 2007), expressed as: 

J =
∑K

j=1

∑N

i=1

⃦
⃦
⃦x(j)i − cj

⃦
⃦
⃦

2
(10)  

Pseudo F =

(
SSbg

)/
(K − 1)

(
SSwg

)/
(N − K)

(11)  

where the objective function J aims to minimize total intra-cluster 
variance (i.e., squared error) by the distance function; K is the number 
of clusters; N denotes the number of data points; and cj represents the 
centroid of cluster j. Pseudo-F statistic is adopted as the distance func
tion, where SSbg denotes the between-group sum of squares, and SSwg 
denotes the within group sum of squares. 

Spatiotemporal clustering is initially started by randomly selecting 
locations as representatives of each cluster, and then generated by 
assigning similar locations to the cluster. The new representative is the 
average of each timestamp in the cluster. Finally, in our space-time cube, 
we tentatively set 10 clusters for each built environment factor. 

4. Results 

Table 2 presents the descriptive statistics of urban vibrancy 
measured using Tencent location data and the built environment factors 
in this study. The minimum (Min), maximum (Max), mean, and standard 
deviation (SD) are reported. For instance, the mean overall urban 
vibrancy on weekdays and holidays in the 1342 grids are 1966.29 and 

1829.30 location events, respectively. The minimum, maximum, and 
mean population densities are 72.41, 64,764.20, 6135.51 persons per 
km2, respectively. The average POI mix value is 0.73. The mean 
numbers of commercial and company POI are 102.77 and 58.65, 
respectively. The Maximum numbers of bus and metro station are 27 
and 13, respectively. 

Ordinary least squares (OLS) regression and geographically and 
temporally weighted regression (GTWR) models were implemented to 
investigate the association between the built environment variables and 
urban vibrancy with 32,208 spatiotemporal observations. Table 3 pre
sents the weekday OLS and GTWR model results. The adjusted R2 of the 
OLS and GTWR model are 0.298 and 0.426, respectively, for weekday, 
which indicates that our data fit the non-stationary GTWR model, rather 
than the static OLS model. The OLS shows that, population density is 
positively related to urban vibrancy. The building coverage area, and the 
building floor areas of residential, commercial, office and industrial are 
negatively related to urban vibrancy. Floor area mix and POI mix are 
positively related to urban vibrancy. Residential, commercial, company, 
and public service POI are positively associated with urban vibrancy. 
The number of metro station also has a positive association. The number 
of street intersection and NDVI are negatively associated with urban 
vibrancy. 

The GTWR model reveals varying local associations between the 
built environment factors and spatiotemporal urban vibrancy. The local 
coefficients of spatiotemporal observations for population density, POI 
mix, commercial POI, and company POI are positive. The relationships 
between spatiotemporal urban vibrancy and building coverage area; 
floor areas of commercial, office and industrial; floor area mix; street 
intersection; residential, and public service POI; bus station; and metro 
station fluctuated between negative and positive. Residential floor area, 
recreational POI, and NDVI are negatively related to spatiotemporal 
urban vibrancy. 

Table 4 presents the regression results for holiday. The adjusted R2 of 
the GTWR model is still greater than that of the OLS model (0.395 vs. 
0.283), which indicates that the GTWR model has higher goodness-of-fit 
than the OLS model. The OLS model results show similar relationships 
between the built environment and urban vibrancy for holiday with 
weekday, except for commercial, and office floor areas, and floor area 
mix. The GTWR model holiday results show similar fluctuation of the 
local associations with weekday. 

According to the model results for weekday and holiday, population 
density; POI mix; POI of residential, commercial, company, and public 
service; and metro station demonstrate a significantly positive rela
tionship with dynamic urban vibrancy (see the coefficients of OLS, and 
the local coefficients of GTWR, especially median local coefficients). 
However, floor area factors, street intersection, NDVI, recreational POI, 
and bus station are not good predictors for spatiotemporal urban 
vibrancy. 

Fig. 2 shows the temporal average coefficients of the 1342 grids for 
the built environment variables for 24 timestamps. Overall, the built 
environment factors exhibit varying temporal average coefficients at 
different timestamps. First, the temporal average coefficients of popu
lation density are positively associated with urban vibrancy, and are 
relatively high on weekday and holiday (i.e., non-sleep period during 
08:00–24:00). The temporal average coefficients of building coverage 
area, and building floor area factors are generally negative, except for 
several periods for some factors (e.g., commercial, and office floor 
areas). Second, the temporal average coefficients of floor area mix are 
usually positive on weekday, but negative on holiday. The temporal 
average coefficients of POI mix are positively associated with urban 
vibrancy and the coefficients on holiday are higher than those on 
weekday. The coefficients remain high from 10:00 to 24:00. Third, the 
temporal average coefficients of the number of street interaction for the 
24 hourly periods are negative. NDVI has a negative temporal average 
relationship with urban vibrancy. Fourth, the temporal average co
efficients of commercial, company, and public service POI are positively 

Table 2 
Descriptive statistics of urban vibrancy and built environment factors (N =
1342).  

Variables (Unit) Min Max Mean SD 

Dependent variables 
Urban vibrancy on 

weekday (N) 
1.00 18,935.00 1966.29 2372.31 

Urban vibrancy on 
holiday (N) 

1.33 19,666.67 1829.30 2187.58  

Independent variables 
Population density (N/ 

km2) 
72.41 64,764.20 6135.51 7814.96 

Building coverage area 
(m2) 

0 502,988.00 133,398.40 118,136.50 

Building floor area (m2) 0 4,735,020.40 538,996.70 607,757.40 
Residential floor area (m2) 0 2,812,706.20 300,173.60 408,442.10 
Commercial floor area 

(m2) 
0 1,609,384.26 34,660.46 95,501.30 

Office floor area (m2) 0 1,499,292.83 18,854.24 97,521.88 
Industrial floor area (m2) 0 945,502.80 152,336.60 177,041.90 
Floor area mix (≥0) 0 1.51 0.68 0.36 
POI mix (≥0) 0 1.57 0.73 0.44 
Street length (m) 0 20,104.58 5482.40 3829.47 
Number of street 

intersection (N) 
0 115 15.33 16.54 

NDVI − 0.33 0.76 0.32 0.18 
Residential POI (N) 0 234 12.36 21.04 
Commercial POI (N) 0 1411 102.77 134.88 
Company POI (N) 0 762 58.65 91.47 
Public service POI (N) 0 149 10.24 17.24 
Recreational POI (N) 0 68 1.74 3.91 
Number of bus station (N) 0 27 4.39 4.27 
Number of metro station 

(N) 
0 13 0.26 0.83 

Note: Min = Minimum; Max = Maximum; SD = Standard deviation; N =
Number. 
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associated with urban vibrancy both on weekday and holiday, and 
remain relatively high from 10:00 to 24:00. The coefficients of com
mercial, and public service POI for weekday are generally greater than 
those for holiday. However, company POI shows the opposite trend for 
weekday than holiday. The temporal average coefficients of residential 
POI are usually positive, but fluctuate. Finally, metro station has a 
positive temporal relationship with urban vibrancy during rush hours (e. 
g., 10:00–22:00 on holiday). 

Overall, population density; POI mix; POI of residential, commercial, 
company, and public service; and metro station are strong predictors for 
spatiotemporal urban vibrancy. Fig. 3 displays the spatiotemporal pat
terns of local coefficients for population density and POI mix for 
weekday and holiday (and see Appendix for built environment factors of 
residential, commercial, company, and public service POI; and metro 
station). The space-time cubes were created in ArcGIS Pro. As the figure 
shows, the relationships between each built environment factor and 
urban vibrancy vary spatially and temporally. Particularly, the co
efficients of the built environment factor in a single grid vary across the 
24 timestamps. Similarly, the correlation strengths of the built 

environment factor at a single timestamp vary across the 1342 grids. A 
higher value of the space-time observation value indicates a higher 
contribution of the built environment to urban vibrancy. 

Fig. 4 illustrates the time series clustering of local coefficients for the 
built environment factors for weekday and holiday, including popula
tion density (and see Appendix for built environment factors of POI mix; 
residential, commercial, company, and public service POI; and metro 
station). We classified all grids into 10 clusters. Within each cluster, the 
temporal trends of the local relationships with urban vibrancy are 
similar. Different clusters have different average local associations be
tween the built environment factor and urban vibrancy, and different 
temporal trends. The heatmap for the relationship between the built 
environment and urban vibrancy illustrates the average local coefficient 
for each cluster at each hour. A higher value indicates a higher contri
bution of the built environment to urban vibrancy. 

5. Discussion 

This study extends previous research on urban vibrancy in several 

Table 3 
OLS and GTWR model summary results for weekday (N = 1342 grids × 24 timestamps = 32,208).   

Model OLS Model GTWR 

β p value Local β Local T value 

Min. 1st Q Median 3rd Q Max. Median 

Population density 0.105 <0.001*** 0.035 0.084 0.112 0.127 0.169 7.068 
Building coverage area − 0.079 <0.001*** − 0.175 − 0.108 − 0.077 − 0.040 0.032 2.642 
Residential floor area − 0.080 <0.001*** − 0.207 − 0.115 − 0.086 − 0.049 − 0.008 3.537 
Commercial floor area − 0.019 0.009** − 0.088 − 0.031 − 0.016 − 0.008 0.054 1.006 
Office floor area − 0.021 0.003** − 0.116 − 0.034 − 0.022 − 0.006 0.057 1.519 
Industrial floor area − 0.061 <0.001*** − 0.173 − 0.103 − 0.068 − 0.023 0.030 3.296 
Floor area mix 0.016 0.010* − 0.010 0.005 0.013 0.022 0.056 1.160 
POI mix 0.111 <0.001*** 0.034 0.086 0.125 0.146 0.196 8.720 
Number of street intersection − 0.048 <0.001*** − 0.139 − 0.060 − 0.040 − 0.028 0.022 2.390 
NDVI − 0.109 <0.001*** − 0.174 − 0.129 − 0.116 − 0.087 − 0.038 8.587 
Residential POI 0.038 <0.001*** − 0.072 0.013 0.033 0.053 0.165 1.588 
Commercial POI 0.235 <0.001*** 0.039 0.128 0.258 0.334 0.409 13.357 
Company POI 0.141 <0.001*** 0.049 0.110 0.134 0.163 0.273 5.843 
Public service POI 0.185 <0.001*** − 0.009 0.065 0.184 0.315 0.403 6.887 
Recreational POI − 0.022 <0.001*** − 0.057 − 0.030 − 0.022 − 0.016 − 0.003 1.689 
Number of bus station − 0.002 0.831 − 0.058 − 0.015 − 0.003 0.008 0.081 0.498 
Number of metro station 0.013 0.017* − 0.044 − 0.004 0.010 0.024 0.071 1.378 
Adjusted R2 0.298 <0.001*** 0.426 

Note: ***p < 0.001, ** p < 0.01, * p < 0.05; In the GTWR model, β indicates regression coefficients, and the T value represents the local regression absolute T value. 

Table 4 
OLS and GTWR model summary results for holiday (N = 1342 grids × 24 timestamps = 32,208).   

Model OLS Model GTWR 

β p value Local β Local T value 

Min. 1st Q Median 3rd Q Max. Median 

Population density 0.110 <0.001*** 0.056 0.091 0.110 0.124 0.189 6.463 
Building coverage area − 0.047 0.001** − 0.171 − 0.076 − 0.036 − 0.002 0.053 1.332 
Residential floor area − 0.076 <0.001*** − 0.168 − 0.096 − 0.077 − 0.059 0.004 2.925 
Commercial floor area − 0.014 0.057 − 0.088 − 0.037 − 0.017 0.001 0.065 1.512 
Office floor area − 0.013 0.052 − 0.113 − 0.031 − 0.014 0.005 0.075 1.092 
Industrial floor area − 0.061 <0.001*** − 0.167 − 0.090 − 0.069 − 0.042 0.021 3.038 
Floor area mix − 0.001 0.996 − 0.038 − 0.009 − 0.001 0.005 0.037 0.435 
POI mix 0.131 <0.001*** 0.048 0.113 0.143 0.166 0.206 9.148 
Number of street intersection − 0.093 <0.001*** − 0.157 − 0.106 − 0.089 − 0.074 − 0.038 4.947 
NDVI − 0.128 <0.001*** − 0.183 − 0.149 − 0.131 − 0.107 − 0.052 8.611 
Residential POI 0.035 <0.001*** − 0.067 0.014 0.030 0.046 0.169 1.391 
Commercial POI 0.196 <0.001*** 0.066 0.145 0.199 0.253 0.329 9.579 
Company POI 0.189 <0.001*** 0.078 0.148 0.199 0.229 0.282 8.002 
Public service POI 0.118 <0.001*** − 0.015 0.075 0.117 0.164 0.275 4.478 
Recreational POI − 0.019 <0.001*** − 0.048 − 0.027 − 0.019 − 0.012 0.004 1.438 
Number of bus station 0.013 0.090 − 0.033 − 0.001 0.010 0.021 0.082 0.776 
Number of metro station 0.023 <0.001*** − 0.020 0.005 0.021 0.034 0.081 1.811 
Adjusted R2 0.283 <0.001*** 0.395  

Note: ***p < 0.001, ** p < 0.01, * p < 0.05; In the GTWR model, β indicates regression coefficients, and the T value represents the local regression absolute T value. 
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aspects. First, Tencent location big data, characterized by fine-grained 
spatiotemporal granularity, was used to portray the real-time human 
activities at the population level. Second, the spatiotemporal associa
tions between built environment characteristics and urban vibrancy was 

systematically investigated. The results reveal that the associations be
tween built environment characteristics and urban vibrancy vary both 
spatially and temporally. Hence, the built environment-urban vibrancy 
relationship should be treated as dynamic rather than static one. 

Fig. 2. Temporal average coefficients of the built environment factors.  
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5.1. Major findings 

We found that urban density, diversity, design, destination accessi
bility, and distance to transit are associated with the spatiotemporal 
dynamics of urban vibrancy in Shenzhen, China. 

Population density is a good predictor of urban vibrancy, consistent 
with previous findings (Li, Li, et al., 2021; Wu et al., 2022). The avail
ability of people is the key condition for human interactions and human 
activities, although it is not the only condition. A higher population 
density corresponds to higher human activity intensity if other condi
tions are equal. Both on weekday and holiday, except during sleep hours 
(i.e., 00:00–08:00), population density is positively associated with 
urban vibrancy. However, the strengths of the association generally tend 
to be higher for weekday than holiday. For instance, on weekday, 

population density contributes more to urban vibrancy from 18:00 to 
22:00. The densely populated areas of Shenzhen possibly feature more 
active behaviors on weekday. Overall, urban areas with a high popula
tion density may stimulate urban vibrancy. 

Buildings are one of the fundamental urban infrastructures, and are 
expected to be related to urban vibrancy, as they can accommodate 
various indoor human activities. However, the results show that neither 
building coverage area nor building floor area factors are significant 
predictors of urban vibrancy in Shenzhen. Similarly, the spatial and 
temporal associations between urban vibrancy and the floor areas of 
residential, commercial, office, and industrial are generally negative in 
the whole spatiotemporal observations, except for a few areas. This 
shows that building density cannot reflect the urban vibrancy in a high- 
density city. This finding is contrary to that of a previous study on core 

Fig. 3. Space-time cube by local coefficients of the built environment factor (each layer shows data for one timestamp, layers from bottom to top represents hours 1 
to 24). 
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Fig. 4. Time series clustering of local coefficients for built environment factors in the 1342 grids. Areas of the same color in each map represents clustered grids (left 
figure). Heatmap shows the average local coefficient for each cluster at each timestamp (right figure). 
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urban areas in Shenzhen; the study suggested that urban areas with 
more mid- and high-rise building blocks were more conducive to urban 
vitality (Ye et al., 2018). Another study found that the building density 
in Shanghai was positively related to urban vibrancy, while no signifi
cant associations existed between vibrancy and building height, sug
gesting that filling horizontal spaces rather than vertical spaces 
enhances urban vibrancy (Huang et al., 2019). However, our findings 
suggest that increasing either horizontal (e.g., building coverage area) 
or vertical (e.g., building floor area) building spaces may not increase 
urban vibrancy in Shenzhen. Increasing building density may not be an 
effective method to promote urban vibrancy in high-density urban 
context. An area with a cluster of skyscrapers or residential buildings 
could cause psychological strain, which can hinder urban vibrancy. 

Diversity, especially POI mix, is positively related to urban vibrancy. 
Theoretically, functional diversity is regarded as the primary generator 
of vibrancy (Jacobs, 1961; Montgomery, 1998). Mixed functional use is 
important to promote human activity intensity for various purposes 
(Kang et al., 2020; Liu et al., 2019; Yue et al., 2017). Floor use mix is 
slightly positively related to urban vibrancy in Shenzhen, especially for 
weekday. Thus, buildings with a mixed floor space use, including resi
dential and commercial uses, commercial and office uses, and more 
functional uses, are more vibrant on weekday in Shenzhen. POI mix 
shows a strong positive impact on urban vibrancy both on weekday and 
holiday. Our findings on POI mix are consistent with those of previous 
research based on social media check-in data (Wu, Ye, et al., 2018). 
Compared with social media data, Tencent location data have stronger 
associations with POI mix. Furthermore, some established urban areas in 
Shenzhen (e.g., Luohu, Futian, Nanshan, Baoan district) exhibit stronger 
relationships of POI mix with vibrancy during 10:00–22:00. Areas with 
mixed destinations can accommodate various human activities such as 
working, shopping, catering, and social contact (Wu, Ye, et al., 2018; 
Yue et al., 2017). Hence, the variety of attractive destinations help to 
promote urban vibrancy and public participation (Jacobs-Crisioni, 
Rietveld, Koomen, & Tranos, 2014; Lu et al., 2019; Zarin et al., 2015). 

Design factors include the number of street intersection and urban 
greenery, both of which are negatively related to urban vibrancy in 
Shenzhen. A higher density of street intersection in Shenzhen may not 
yield higher urban vibrancy. Our findings disagree with those of some 
studies that reported a higher number of street intersection resulted in 
higher urban vibrancy (Huang et al., 2019; Tu et al., 2020; Yue & Zhu, 
2019). In a city such as Shenzhen, urban areas with a high street 
intersection density like residence blocks, urban villages, and industrial 
and technical blocks may not be vibrant during most of the day. The 
urban areas with more street intersections in Shenzhen may have lower 
dynamic urban vibrancy. Moreover, urban greenery has a negative as
sociation with urban vibrancy. Shenzhen is a garden city famous for its 
abundant greenery; however, places with abundant greenery are mostly 
parks, mountains and the greenbelt area. People prefer mixed-use urban 
spaces such as commercial and leisure public places. In Shenzhen, areas 
with high human activity intensity usually have less greenery coverage. 
This shows that green spaces have not effectively attracted public use. 
Hence, green spaces should be effectively-integrated into areas with 
high human activity intensity to increase urban residents’ exposure to 
nature at the population level. 

Destination accessibility plays a critical role in enhancing urban 
vibrancy. This study found that in Shenzhen, the accessibilities of 
commercial, company, and public service POI are significantly associ
ated with weekday and holiday urban vibrancy. First, urban blocks with 
more commercial destinations will experience more residents’ daily 
activities such as shopping, catering, and social contact. The finding on 
commercial POI accords with that of a previous study on Shenzhen 
based on social media check-in data (Wu, Ye, et al., 2018). Urban resi
dents in Shenzhen possibly engage in more commercial and business 
activities on weekday. Second, a higher number of company destina
tions results in more working-oriented activities. Places with more 
companies can accommodate more people for work and other daily 

activities. However, company POI has a weaker temporal (10:00–22:00) 
association with vibrancy on weekday. That is reasonable that such 
areas in Shenzhen are less vibrant on weekday, because most people are 
busy at work. Third, more destinations of public service POI such as 
government service centers, schools, and hospitals may also increase 
urban vibrancy, especially on weekday. Areas providing political, 
educational, and medical services could experience high human activity 
intensity (Liu et al., 2019; Tu et al., 2020; Yue et al., 2017). In addition, 
different POI destinations in Shenzhen might be mixed with each other 
in Shenzhen. Their contributions to urban vibrancy might complement 
each other at different times and spaces. Therefore, urban planners 
should arrange more functional destinations with mixed use to promote 
urban vibrancy. 

As distance to transit, metro station density is able to predict urban 
vibrancy. Transportation accessibility is closely related to urban 
vibrancy. Areas with more metro station in Shenzhen experience higher 
vibrancy, consistent with the findings of previous research (Tu et al., 
2020; Yang, Cao, & Zhou, 2021). The metro stations in Shenzhen may be 
designed to match the urban areas with higher population density. 
Moreover, metro stations are often designed near residential, commer
cial, company, and public service facilities, which tend to be higher- 
vibrancy spaces (e.g., pilot development urban areas such as Luohu, 
Futian, and Nanshan District). Moreover, station service areas usually 
serve as important nodes in the city, with more human activities such as 
traveling and related activities. Metro station generally shows a higher 
temporal association with vibrancy on holiday and the rush hours (e.g., 
9:00–12:00 and 17:00–21:00 on weekday; 15:00–18:00 on holiday). 
However, bus station density does not show a significant association 
with urban vibrancy in Shenzhen, probably because bus stations are 
universally distributed across Shenzhen. 

Furthermore, the non-stationary relationships between built envi
ronment factors and urban vibrancy vary both spatially and temporally. 
For a given location, the association strengths vary with time. Likewise 
for a given time, the association strengths vary with location. Conse
quently, different built environment factors might have distinct spatio
temporal relationships with human activity intensity. There are 
distinctive clusters for the spatiotemporal non-stationary relationships 
between built environment factors and urban vibrancy. Areas in a 
cluster may exhibit similar spatiotemporal relationships with built 
environment factors. Urban planning should be cautious about the built 
environment design in different clusters. From a spatiotemporal 
perspective, a uniform design strategy for the whole city may be less 
effective than expected. Design strategies should be tailored to different 
clusters to effectively improve urban vibrancy. 

5.2. Limitations 

This study has several limitations. Only the Tencent location data for 
urban vibrancy measurement were varied temporally, while built 
environment characteristics remained stationary. Future studies should 
consider built environment characteristics with temporal details, such as 
the opening hours of commercial and public service POI. Moreover, we 
considered limited contextual factors in the measurement of the built 
environment using the 5D framework. Furthermore, Tencent location 
data are largely dependent on electronic devices and mobile phone ap
plications. Such data, although with a wide user coverage and a large 
representative sample size, omit human activities do not require Tencent 
apps or mobile phones, which can lead to a biased estimation of urban 
vibrancy. Future studies should quantify human behaviors that do not 
require mobile phones (such as walking, shopping, and social interac
tion). In addition, we measured weekday and holiday urban vibrancy 
levels using only three days for each. Future studies should depict the 
urban vibrancy over longer time frames and identify any long-term 
temporal trends. 
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6. Conclusion 

This study investigated the spatiotemporal patterns between built 
environment factors and urban vibrancy in Shenzhen using Tencent 
location-based urban big data. Built environment characteristics were 
systematically measured using the 5D framework. The spatiotemporal 
associations were investigated using GTWR models, and spatiotemporal 
clustering patterns were analyzed through local coefficient time series 
clustering. The findings revealed that population density, POI factors, 
and metro station are significantly associated with dynamic urban 
vibrancy in Shenzhen, while building density, street intersection, and 
urban greenery are not. The results also showed that POI mix, rather 
building density, may stimulate urban vibrancy. Moreover, we observed 
considerable spatiotemporal non-stationary associations between the 
built environment factors and urban vibrancy. To effectively promote 
urban vibrancy, urban planners and policy makers should pay more 
attention to the spatiotemporal effects of built environment character
istics on urban vibrancy, and customized design interventions should be 

developed for different areas. 
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Appendix

Fig. 3. Space-time cube by local coefficients of the built environment factor (each layer shows data for one timestamp, layers from bottom to top represents hours 1 
to 24).  
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Fig. 4. Time series clustering of local coefficients for built environment factors in the 1342 grids. Areas of the same color in each map represents clustered grids. Heatmap shows the average local coefficient for each 
cluster at each timestamp.  
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