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A B S T R A C T

There has been a global increase in investment in rail transit, driven by its potential to enhance transportation 
efficiency, reduce air pollution, and stimulate economic growth. Both cross-sectional studies and natural ex
periments have contributed to the growing body of evidence supporting these claims. While natural experiments 
are commonly preferred for evaluating the impact of rail transit, cross-sectional studies remain popular due to 
their ease of data collection. However, there is a scarcity of studies that compare these two approaches using the 
same dataset to assess the robustness of cross-sectional studies. Using a two-wave panel dataset from Wuhan, 
China, this study used both cross-sectional and natural experimental analyses to examine the relationship be
tween urban rail transit and travel behavior. The study attempted to enhance the credibility of the cross-sectional 
analysis by controlling for confounding variables and by combining it with the propensity score matching (PSM) 
method, respectively. The results revealed that the cross-sectional analyses could produce similar results, when 
setting a more stringent significance level. The findings suggested that well-designed cross-sectional studies can 
be reliable and represent a cost-effective alternative to resource-intensive natural experiments.

1. Introduction

In recent years, many local and regional governments create new or 
expend existing rail transit systems, which are often regarded as a sus
tainable solution to alleviate traffic congestion and environmental 
problems stemming from automobile use (Nasri and Zhang, 2014). 
However, given the substantial investment required for rail transit 
infrastructure and its irreversible impact once built, it is critical to 
accurately assess the effects of rail transit, particularly its effectiveness 
in improving residents' travel behavior as expected.

Currently, the academic community favors the use of natural 
experiment methods to evaluate the impact of rail transit on the travel 
behavior of residents (Kärmeniemi et al., 2018). Natural experiments 
provide an opportunity to establish causal relationships between real- 
world interventions and outcomes. By leveraging the introduction of 
new rail transit, researchers can isolate the effects of the transit 

improvement from other confounding factors, enhancing the validity of 
causal claims (Leatherdale, 2019).

While natural experiments offer many advantages, their use in 
empirical research is often hampered by data collection challenges, e.g., 
extensive time and funding resources. Consequently, much research 
relies on cross-sectional approaches to study the effects of rail transit on 
travel behavior. Despite the limitations of cross-sectional studies, such 
as the lack of time-varying parameters and the issue of residential self- 
selection, they remain popular in rail transit and travel behavior 
research due to their ease of data acquisition and analysis. Establishing 
correlations that align with our hypothesized causal relationship serves 
as a crucial initial step in investigating potential causal links. The 
implementation of a typical cross-sectional design requires significantly 
fewer resources compared to conducting natural experiments. There
fore, employing cross-sectional approaches to lay the groundwork for 
further research on causal relationships is a sensible course of action. 

* Corresponding author.
E-mail addresses: wangjingjing79@whu.edu.cn (J. Wang), yilu24@cityu.edu.hk (Y. Lu), diaomi@tongji.edu.cn (M. Diao), liuye25@mail.sysu.edu.cn (Y. Liu). 

Contents lists available at ScienceDirect

Journal of Transport Geography

journal homepage: www.elsevier.com/locate/jtrangeo

https://doi.org/10.1016/j.jtrangeo.2024.104035
Received 9 December 2023; Received in revised form 13 July 2024; Accepted 15 October 2024  

Journal of Transport Geography 121 (2024) 104035 

Available online 25 October 2024 
0966-6923/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

mailto:wangjingjing79@whu.edu.cn
mailto:yilu24@cityu.edu.hk
mailto:diaomi@tongji.edu.cn
mailto:liuye25@mail.sysu.edu.cn
www.sciencedirect.com/science/journal/09666923
https://www.elsevier.com/locate/jtrangeo
https://doi.org/10.1016/j.jtrangeo.2024.104035
https://doi.org/10.1016/j.jtrangeo.2024.104035
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtrangeo.2024.104035&domain=pdf


Furthermore, carefully designed cross-sectional studies, particularly 
those incorporating control variables and rigorous research methods, 
have the potential to provide reliable and valuable contributions to our 
understanding of the subject matter (Spector, 2019).

However, few studies have compared the results of cross-sectional 
studies and natural experiments with a single dataset to assess the reli
ability of cross-sectional studies. To the best of our knowledge, there is 
only one study that has used both cross-sectional and longitudinal an
alyses to explore the effect of metro transit on driving and found con
flicting results (Huang et al., 2019). Additional empirical evidence is 
needed to investigate the disparities between the findings of cross- 
sectional analyses and natural experiments. Furthermore, it is crucial 
to explore the potential utilization of statistical methods in aligning and 
refining the outcomes of cross-sectional analyses. This would enable 
cross-sectional analyses to serve as a cost-effective alternative to more 
resource-intensive natural experiments, particularly in situations where 
research resources are limited.

In this study, we used both cross-sectional and natural experiment 
analyses to estimate the relationship between urban rail transit and 
travel behavior in Wuhan, China. To strengthen the reliability of the 
cross-sectional analysis, this study employed two strategies: controlling 
for additional variables and combining it with the propensity score 
matching (PSM) technique. Then, we conducted a comparison between 
the results obtained from cross-sectional analyses and the natural 
experiment study. The aim was to assess the extent to which cross- 
sectional analyses can yield consistent findings with the natural exper
iment, and to explore methodological optimizations that can enhance 
the reliability of cross-sectional analyses as a valuable complement to 
natural experiment studies.

2. Literature review

A substantial body of literature has demonstrated that the con
struction of urban rail transit has a great influence on individuals' travel 
behavior, which can adjust their trip frequency, distance, duration, 
travel mode, and trip distribution. The availability of rail transit options 
provides individuals with a convenient and efficient alternative to other 
travel modes, leading to changes in their travel patterns (Cao and 
Schoner, 2014). Researchers have found that proximity to rail transit 
stations or access to rail lines can encourage individuals to reduce their 
reliance on private vehicles, resulting in a shift to more sustainable 
travel modes, including walking, cycling, or using public transit (Xie, 
2016). Furthermore, the presence of rail infrastructure has been 
observed to improve the overall accessibility and connectivity of urban 
areas, enabling residents to travel more frequently, cover longer dis
tances, and access a wider range of destinations (Deng and Zhao, 2022; 
Wang et al., 2023b). However, contrary arguments have been put forth 
by numerous scholars, suggesting that the newly built rail infrastructure 
may not necessarily effectively promote individuals' sustainable travel 
behavior (Chatman, 2013). This is due to the influence of various con
founding factors, such as the characteristics of the station's built envi
ronment, personal travel preferences, and attitudes. Additionally, the 
relationship between rail transit and travel behavior may exhibit non- 
linear patterns and vary spatially, further complicating the association 
(Cheng et al., 2022; Tao et al., 2023). For instance, a study conducted in 
Hong Kong revealed a significant threshold effect of MTR and bus 
accessibility on daily trip duration specifically for low-income groups 
(Tao et al., 2023). Similarly, another study conducted in Beijing iden
tified significant spatial heterogeneity in the influence of metro station 
accessibility on metro ridership (Du et al., 2022). These findings indicate 
that the association between rail transit and individuals' travel behavior 
is complex, calling for further high-quality and in-depth research (Wang 
et al., 2023a).

Existing studies in this field have mainly used two methods: cross- 
sectional study and natural experiment study. In a cross-sectional 
study, data are collected from a population at a single time point and 

used to explore associations or patterns (Wang and Cheng, 2020). Fig. 1
shows the framework of a typical cross-sectional study design in this 
area. In a cross-sectional study, researchers divide the sample into two 
or more distinct groups: the treatment group and the control group 
(Wang et al., 2023b). The treatment group refers to the participants who 
received an active intervention, which involves the introduction of 
newly constructed rail infrastructure. The control group represents the 
participants who did not receive such an intervention. Scholars then 
compare the travel behavioral outcomes between these groups, attrib
uting any differences in outcomes to the effects of the transit interven
tion. In contrast to longitudinal studies that track respondents over a 
period of time, cross-sectional analyses capture a momentary snapshot 
of information at a given moment (Melissa and Morrison, 2009). This 
makes cross-sectional research easy, quick, and inexpensive to conduct. 
It serves as a valuable tool for hypothesis generation and examination of 
multiple outcomes and exposures that can inform other studies. How
ever, due to the inherent methodological limitations (e.g., lack of tem
poral sequence and presence of selection bias), cross-sectional studies 
remain hard to establish the causal relationship between urban rail 
transit and travel behavior (Wang and Cheng, 2020).

A natural experiment is a study design in which the experimental 
conditions are determined by nature or other factors rather than under 
the control of the researchers (Leatherdale, 2019). Natural experiments 
have been widely used as a study design when controlled experiments 
are difficult to conduct, such as in the fields of economics, political 
science, and public health, and have provided important evidence to 
support the effectiveness of some specific interventions (Craig et al., 
2017). Fig. 2 shows the framework of a typical natural experiment study 
design. In a natural experiment, as in a cross-sectional study, researchers 
also divide the sample into a treatment group that received a rail transit 
intervention and a control group that did not. By collecting data before 
and after the intervention, researchers can compare changes in in
dividuals' travel behavior between the treatment and control groups. In 
an ideal natural experiment design, other than the intervention, the 
other variables should remain homogeneous so that any disparities in 
outcomes can be seen as the effect of rail transit.

While natural experiments are often regarded as the gold standard 
for evaluating interventions of a rail transit due to their ability to 
establish causal relationships, they typically require more financial re
sources and time compared to cross-sectional studies (Zhong et al., 
2021). This highlights the need to compare the two methods to deter
mine whether cross-sectional studies can serve as a viable and cost- 
effective alternative to more expensive natural experiments, particu
larly when research resources are limited. However, there is limited 
empirical research that directly compares the two methods in the field of 
travel behavior. There was only one study that adopted both cross- 
sectional and natural experiment designs to investigate the impact of 
metro transit on driving behavior. The results of this study indicated that 
the quasi-experiment revealed a negative association between metro 
transit and driving, whereas the cross-sectional analysis found no sig
nificant effect (Huang et al., 2019). The authors further concluded that 
regardless of the sophistication of the modeling approaches applied to 
cross-sectional data, the quasi-experiment appears to yield more robust 
results than cross-sectional studies. However, additional empirical evi
dence is still needed to better understand how the findings of cross- 
sectional analyses differ from those of natural experiments. This 
comparative analysis of the two methods can help researchers and 
policymakers make more informed choices when designing studies and 
allocating research resources.

3. Methods

3.1. Study area

The study area is situated in Wuhan, which is a city located in Hubei 
Province, China. In 2021, Wuhan had an urban area of 8569 km2 and an 
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urban population of 13.6 million (Wuhan Statistics Bureau, 2022). As 
the ninth most populous city in China, Wuhan is currently experiencing 
rapid urbanization and motorization, resulting in significant challenges 
to its transportation infrastructure due to increased demand for urban 
mobility and private vehicle use. To alleviate these problems, the gov
ernment is focusing on expanding the city's rail transit system. By 
December 2022, Wuhan's rail transit system encompasses a total of 11 
operational lines, with a combined operational mileage of 460 km 
(Wuhan Statistics Bureau, 2022).

The transit intervention in this study was Wuhan Metro Line 8 (Phase 
2) which commenced operations in January 2021. This new metro line 
consists of 12 stations, running from the city center to the southern 
urban suburb (Fig. 3). As a major passenger flow channel in the central 
area of the city, the line provides a more convenient commuting option 
for residents along the line, as well as alleviating traffic congestion in the 
north-south direction of the central city. In order to ensure the exclusion 
of interference from surrounding lines while maintaining the represen
tativeness of rail transit stations in the area, this study focuses on four 
stations of the line.

In this study, the distance between residents' residences and urban 
rail transit stations is used to define the treatment and control groups. 
Many scholars have conducted research and exploration on the 
threshold of the catchment area of urban rail transit stations, among 
which the threshold of 800 m has been widely adopted as an acceptable 
walking distance of most transit riders in China (Zacharias and Zhao, 
2018). In addition, some Chinese studies have found that due to the 
widespread use of shared bicycles, the coverage area of urban rail transit 
stations should not only consider the walking impact range, but also 
consider the bicycle connection distance, which is usually 1600 m (Sun 

and Zacharias, 2017). For example, in areas where the distribution of 
urban rail transit lines is not very dense, the acceptable distance for 
residents to access stations will increase. Therefore, to better capture the 
influence range of urban rail transit stations, this study set up two 
treatment groups based on the thresholds of 800 m and 1600 m. The first 
treatment group (Group 1) selected neighborhoods within 800 m of the 
four stations, the second treatment group (Group 2) selected neighbor
hoods between 800 m and 1600 m from the stations, and the control 
group (Group 3) selected neighborhoods between 1600 m and 2400 m 
from the stations. The spatial distribution of the sampled neighborhoods 
is shown in Fig. 3.

3.2. Data and variables

A two-wave panel survey was conducted before and after the open
ing of Metro Line 8 (Phase 2) in November–December 2020 and 2021 
respectively. We assembled a survey team of 25 local undergraduate and 
postgraduate students who were responsible for recruiting respondents 
and administering the survey. The survey team used a stratified, multi- 
stage sampling method to select respondents. First, To ensure the 
representativeness of the sample, we randomly selected approximately 
50 % of the eligible neighborhoods from each buffer as sampling points. 
Ultimately, we identified 5, 3, and 2 neighborhoods in Group 1, 2, and 3, 
respectively, for each station. It is important to note that the number of 
candidate neighborhoods decreased as the distance from the metro 
station increased, as some neighborhoods were already influenced by 
other established metro stations. Next, 20–25 households within the 
selected neighborhoods were randomly chosen based on the building 
and house numbers. From each selected household, a qualified member 

Fig. 1. The framework of a cross-sectional study design.

Fig. 2. The framework of a natural experiment study design.
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was selected using the Kish grid method. Respondents were required to 
meet the following criteria: (1) be at least 19 years old, (2) have resided 
in the neighborhoods for at least a year to account for potential self- 
selection bias (Heinen et al., 2015), and (3) be capable of walking 
independently for a minimum of 15 min.

In all, the baseline survey gathered 908 respondents, out of which 

422 completed the follow-up survey, leading to a retention rate of 46.5 
%. Based on previous natural experiments conducted in this field and a 
power calculation using G*Power 3.1.9.7, we determined that a sample 
size of 85 for the control group would yield a desired power value of 
0.90, assuming an effect size of 0.20 and an alpha error probability of 
0.05 (Wang et al., 2023a; Freedman and Schatzkin, 1992). However, it is 

Fig. 3. Study sites for the treatment and control group. 
Note: The buffer zone was calculated based on the street network distance, and was simplified for visualization.
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important to note that the effect size used in the calculation was 
determined based on the pooled effect size from a meta-analysis (Wang 
et al., 2023a). Therefore, caution should be exercised when interpreting 
results that yield effect sizes smaller than this specified value in our 
study analysis. Table 1 shows the socio-demographic characteristics and 
objective neighborhood attributes of the respondents who completed 
the two-wave questionnaire survey. The overall composition of the re
spondents showed a slightly higher representation of females compared 
to males, with an average age of 44–48 years, a bachelor's degree, a 
monthly household income of RMB 15,001-20,000, three family mem
bers, and a car. Table 1 indicates that there were no significant differ
ences in socio-demographic characteristics among the three groups. 
However, noticeable disparities were observed in some objective 
neighborhood characteristics. It is essential to consider these variations 
in the upcoming analyses.

This study employs variables from five categories: the dependent 
variable - travel behavior; and the control variables which might influ
ence the respondents' travel behavior, including objective and perceived 
neighborhood characteristics, travel attitudes, and socio-demographic 

factors. Travel behavior was assessed by asking respondents to detail 
their frequency and duration of trips in six modes of transit: rail, bus, 
car, e-bike, cycling, and walking, encompassing both work and non- 
work trips. Specifically, respondents were requested to provide the 
number of days in the last month during which each mode of travel was 
used for both work and non-work related trips. Responses were collected 
using a six-point scale, indicating frequency with the following options: 
(1) “never,” (2) “less than once a month,” (3) “one to three times a 
month,” (4) “once a week,” (5) “two to three times a week,” and (6) “four 
to five times a week.” To facilitate statistical analysis, these response 
categories were transformed into numerical values that represent the 
estimated average number of times per month, specifically ‘0,’ ‘0.5,’ ‘2,’ 
‘4.3,’ ‘10.75,’ and ‘19.35’ times, respectively. Trip duration was 
measured by the time respondents spent in each mode of travel on a 
typical workday and a day off. This data was gathered through trip di
aries maintained by the respondents, which recorded all their travel 
activities (movements from one location to another) over a 24-h period.

The objective neighborhood characteristics encompassed neighbor
hood population density, land use mix, number of street intersections, 
number of bus stops, and number of commercial facilities. The number 
of street intersections, bus stops, and commercial facilities were counted 
within an 800-m radius from the main entrance of neighborhoods. This 
distance is generally regarded as walkable for the majority of individuals 
and is commonly employed in urban planning to assess the accessibility 
of an area (Zacharias and Zhao, 2018).

The description of perceived neighborhood characteristics was 
adapted from Huang et al. (2019), who examined the impact of rail 
transit on car use in Xi'an, China. Following the “D-variables” framework 
for the built environment (Ewing and Cervero, 2001), this study selected 
seven indicators related to three dimensions for the built environment: 
transit, accessibility, and walkability (Table 2). Respondents were asked 
to assess the extent to which the built environment attributes of their 
neighborhoods were accurate using a five-point scale. The scale ranged 
from (1) “not at all true” to (5) “entirely true.”

To gauge individuals' attitudes towards travel, respondents were 
prompted to indicate the extent to which they agreed with a statement 
about each mode of travel. This was done using a five-point scale that 
ranged from (1) “strongly disagree” to (5) “strongly agree”. The state
ment “I prefer to travel by rail/bus/car/e-bike/bike/foot” was devel
oped by Stark and Hössinger (2018), who explored the relationship 
between travel attitudes and mode choice.

The survey also collected respondents' socio-demographic details, 
which include age, gender, level of education, household income, 
household size, and car ownership.

3.3. Statistical analysis

This study used two cross-sectional analysis methods using follow-up 
dataset only. The aim was to investigate whether varying cross-sectional 
analyses could produce results consistent with those obtained from 
natural experiments.

3.3.1. Cross-sectional analysis 1
In Cross-sectional analysis 1, a multilevel regression model was 

employed to estimate the association between urban rail transit and 

Table 1 
Descriptive statistics of respondents (N = 422).

Group 1 
(N = 236) 
n (%)/Mean 
(SD)

Group 2 
(N = 101) 
n (%)/Mean 
(SD)

Group 3 
(N = 85) 
n (%)/Mean 
(SD)

P- 
value

Socio- 
demographics
Malea 108 (45.8) 47 (46.5) 43 (50.6) 0.744
Age 46.962 

(14.837)
48.436 
(14.918)

43.506 
(14.393)

0.064

Education level 3.814 (1.414) 3.871 
(1.310)

4.200 
(1.263)

0.080

Household income 5.720 (1.682) 5.713 
(1.972)

6.176 
(1.935)

0.117

Household size 3.263 (1.298) 3.000 
(1.342)

3.235 
(1.352)

0.238

Car ownership 0.856 (0.680) 0.723 
(0.677)

0.729 
(0.640)

0.145

Built environment
Neighborhood 
population density

2.623 (0.845) 1.963 
(1.159)

2.143 
(1.315)

0.003*

Land use mix 1.475 (0.212) 1.451 
(0.241)

1.569 
(0.002)

0.060

Number of street 
intersections

17.608 
(7.170)

19.425 
(6.607)

16.429 
(3.332)

0.057

Number of bus stops 24.076 
(4.136)

22.082 
(2.019)

22.265 
(2.380)

0.137

Number of 
commercial facilities

625.677 
(181.780)

564.149 
(59.101)

593.429 
(43.316)

0.034*

Note:
(a) Group 1: the first treatment group (respondents who lived within a distance 
of 800 m from the stations). Group 2: the second treatment group (respondents 
who lived within a distance of 800 to 1600 m from the stations). Group 3: the 
control group (respondents who lived within a distance of 1600 to 2400 mfrom 
the stations).
(b) The educational level was assessed using a six-point scale, ranging from (1) 
elementary school or lower, (2) junior high school, (3) high school (including 
vocational school), (4) junior college, (5) bachelor's degree, to (6) master's de
gree or higher.
(c) Monthly household income was assessed using an eleven-point scale, ranging 
from (1) ¥1500 or less, (2) ¥1501-3000, (3) ¥3001-5000, (4) ¥5001-8000, (5) 
¥8001-10,000, (6) ¥10,001-15,000, (7) ¥15,001-20,000, (8) ¥20,001-25,000, (9) 
¥25,001-30,000, (10) ¥30,001-40,000, to (11) ¥40,000 or more.
(d) Car ownership was assessed at the household level.
(e) Neighborhood population density was measured in units of 10,000 persons 
per square km.
(f) The count of street intersections, bus stops, and commercial facilities was 
within an 800 m buffer from neighborhoods' main entrances.
(g) ANOVA was used to assess significant differences among the three groups (a 

Chi-square test), *: p < 0.05.

Table 2 
Measurements of perceived neighborhood characteristics.

Built environment attributes Statements

Transit Easy access to transit station

Accessibility

Easy access to parks and open spaces
Easy access to shopping areas
Easy access to downtown
Easy access to workplace

Walkability
Connected sidewalks within the neighborhood
Connected bike routes around the neighborhood
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travel behavior. Multilevel regression is a statistical method used to 
analyze data with a nested structure (Bickel, 2007). In this study, for 
example, residents residing in the same neighborhood often exhibit 
more similarities in travel habits compared to individuals randomly 
selected from the overall population. Traditional multivariate regression 
techniques treat the units of analysis as independent observations and 
overlook unobserved characteristics within the hierarchical structure. In 
contrast, multilevel regression enables modeling the effects of predictors 
at each level and takes into account the association and dependence 
between observations within the same level, such as the clustering effect 
of travel behaviors in neighborhoods within this study. To enhance the 
credibility of the model, this analysis incorporated additional variables 
(such as socio-demographics, objective and perceived neighborhood 
characteristics and travel attitudes) into the multilevel regression model 
as control variables.

Individual respondents (level 1) were modeled to be clustered within 
neighborhoods (level 2) with random intercepts. Neighborhoods are 
geocoded areas, created by the transportation department of Wuhan for 
traffic analysis. This study adopted the following equations in the 
multilevel regression model: 

Level 1 : Yij = α0j +
∑N

n=1
αnjXnij + rij 

Level 2 : α0j = γ00 + μ0j 

α1j = γ10 + μ1j 

…… 

αnj = γn0 + μnj 

Where Yij is the travel behavior outcome of respondent i in neigh
borhood j, which can be the trip frequency and the trip duration of a 
certain travel mode of an individual, or the total trip frequency and 
duration of an individual. Xnij is the explanatory variable of respondent i 
in neighborhood j at level 1, including socio-demographics, objective 

and perceived neighborhood characteristics and travel attitudes. α0j, α1j, 
…,αnj is the random intercept at level 1; γ is the regression coefficient to 
be estimated; rij is the random effect at level 1; μ is the random error term 
at level 2, representing unknown factors at level 2 that affect the travel 
behavior.

3.3.2. Cross-sectional analysis 2
In Cross-sectional analysis 2, we employed PSM method in combi

nation with paired t-tests to assess the impact of the rail line. PSM can be 
used to reduce bias in the cross-sectional analysis by creating compa
rable treatment and control groups according to the propensity score 
(Austin, 2008). The propensity score is a numerical value that indicates 
the probability or likelihood of an individual being allocated to a 
treatment group. It is derived from observed characteristics or cova
riates such as age, gender and education. Once the propensity scores are 
estimated, the next step is to match individuals in the treatment group 
with those in the control group who possess similar propensity scores. 
Once the matching is completed, the effect of the rail transit can be 
estimated through comparing the outcomes between the matched pairs. 
It allows for a more valid comparison of the treatment effect by reducing 
the influence of potential confounding variables.

In this analysis, individuals in the treatment group 1 (Group 1) and 
the control group (Group 3), as well as individuals in the treatment 
group 2 (Group 2) and the control group (Group 3), were paired based 
on their socio-demographic and objective neighborhood characteristics. 
Two group pairs (Group pair 1–3 and Group pair 2–3), consisting of 
matched individuals who have statistically similar socio-demographic 
and objective neighborhood characteristics, were obtained for anal
ysis. Table 3 shows the socio-demographic and objective neighborhood 
characteristics of the respondents after matching. The results of paired t- 
tests (Chi-square tests) showed that there was no significant difference 
in socio-demographic and objective neighborhood characteristics be
tween the matched samples.

Then, paired t-tests were utilized to determine whether there were 
any significant differences in the travel behavioral changes between the 
matched group pairs. The purpose of this analysis was to attribute the 

Table 3 
Descriptive statistics of respondents after matching.

Group pair 1–3 Group pair 2–3

Group 1 
(N = 71) 
n(%)/Mean (SD)

Group 3 
(N = 71) 
n(%)/Mean (SD)

P-value Group 2 
(N = 63) 
n(%)/Mean (SD)

Group 3 
(N = 63) 
n(%)/Mean (SD)

P-value

Socio-demographics
Malea 34 

(47.9)
34 
(47.9) 0.725

29 
(46.0)

29 
(46.0) 0.729

Age 45.770 
(15.386)

45.506 
(15.393)

0.412 45.928 
(16.184)

45.500 
(13.340)

0.175

Education level 4.085 
(1.344)

4.440 
(1.329)

0.518 4.200 
(1.263)

4.183 
(1.360)

0.662

Household income 5.607 
(1.713)

5.858 
(1.978) 0.291

6.176 
(1.935)

6.467 
(1.945) 0.143

Household size 3.289 
(1.344)

3.235 
(1.352)

0.907
3.176 
(1.353)

3.367 
(1.390)

0.324

Car ownership 0.785 
(0.639)

0.729 
(0.640)

0.636 0.751 
(0.610)

0.783 
(0.661)

0.624

Built environment
Neighborhood population density 2.510 

(1.298)
2.211 
(1.206) 0.112

2.004 
(1.206)

2.019 
(1.205) 0.769

Land use mix 1.498 
(0.189)

1.482 
(0.213) 0.892

1.481 
(0.213)

1.521 
(0.212) 0.326

Number of street intersections 17.329 
(6.490)

18.623 
(6.058)

0.242 18.667 
(6.068)

15.578 
(6.046)

0.138

Number of bus stops 23.647 
(2.872)

22.131 
(2.123)

0.482 22.118 
(2.124)

22.144 
(2.122)

0.731

Number of commercial facilities 608.043 
(60.792)

591.989 
(58.816) 0.124

571.667 
(56.825)

582.322 
(57.806) 0.178

Note: Paired t-tests were applied to assess whether there were any significant differences in socio-demographic characteristics between the group pairs (a Chi-square 
test). *: p < 0.05.
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observed differences specifically to the transit intervention treatment.

3.3.3. Natural experiment analysis
In the natural experiment analysis, we used a difference-in- 

differences (DiD) model to evaluate the effect of the transit interven
tion on travel behavior by comparing the before-and-after changes be
tween the treatment and the control groups. The assumption of parallel 
trends is a fundamental component of the Difference-in-Differences 
(DiD) model (Craig et al., 2017). It posits that, in the absence of the 
treatment, the trends in the outcomes would have followed a similar 
pattern for both the treatment and control groups. By relying on this 
assumption, the DiD model enables the identification of the treatment 
effect by attributing any observed disparities specifically to the 
treatment.

The DiD model is implemented through regression analysis, where 
the treatment group, time indicators, and their interaction term are 
included as independent variables. The coefficient of the interaction 
term between the treatment variable and the time variable represents 
the estimated effect of the transit intervention. This study adopted the 
following equation in the DiD model: 

Yit = β0 + β1Ti + β2Pt + β3TiPt + εit 

Where Yit is the travel behavior outcome of respondent i at time 
period t, Ti is the group dummy, which is equal to 1 if i belongs to the 
treatment group and 0 otherwise, and Pt is the time dummy, repre
senting the time period (T1 (0) and T2 (1)). β3 is the DiD estimator that 
indicates the treatment effect.

To prove the robustness of the conclusions, we further performed 
sensitivity analyses with different buffer ranges, changing the bound
aries of the first treatment plots from 800 m to 700 m and 900 m, and the 
second treatment plots from 1600 m to 1500 m and 1700 m, 
respectively.

4. Results

4.1. Cross-sectional analysis 1

Tables 4 & 5 present the multilevel regression model results for the 
association between rail transit and individuals' travel behavior (trip 
frequency and duration) after controlling for socio-demographic, 
objective and perceived neighborhood, and travel attitudinal 
characteristics.

4.1.1. Trip frequency
For rail trips, p-values were significant for non-work trips in both 

group pair 1–3 (coefficient = 5.569, p < 0.001) and group pair 2–3 
(coefficient = 4.063, p < 0.001). For car trips, the significant associa
tions between urban rail transit and trip frequency were found in group 
pair 1–3 for both work (coefficient = − 3.541, p = 0.005) and non-work 
trips (coefficient = − 1.834, p = 0.030). For cycling trips, p-values were 
significant in group pair 1–3 for both work (coefficient = − 1.924, p =
0.038) and non-work trips (coefficient = − 1.693, p = 0.045), and in 
group pair 2–3 for non-work trips (coefficient = − 2.036, p = 0.030). For 
walking trips, only pair 1–3 showed significant associations for non- 
work trips (coefficient = − 2.729, p = 0.021). For bus, e-bike and total 
trips, there was no significant association between urban rail transit and 
trip frequency.

4.1.2. Trip duration
For rail trips, p-values were significant only for work trips in group 

pair 2–3 (coefficient = 11.587, p = 0.042). For car trips, only group pair 
1–3 showed significant associations between urban rail transit and trip 
duration for work trips (coefficient = − 10.142, p = 0.009). For walking 
trips, the p-value was significant only in group pair 1–3 for non-work 
trips (coefficient = − 7.511, p = 0.005). The analysis did not find a 
statistically significant relationship between urban rail transit and trip 

frequency for bus, e-bike, cycling and total trips.

4.2. Cross-sectional analysis 2

Tables 6 & 7 present the paired t-test results of the before-after 
changes in trip frequency between the matched samples of the treat
ment and control groups.

4.2.1. Trip frequency
For rail trips, a significant inter-group difference was found between 

Group 1 and Group 3 for both work (difference = 3.192 times, p =
0.006) and non-work trips (difference = 5.520 times, p = 0.008). Car 
trips showed a significant inter-group difference between Group 1 and 
Group 3 only for non-work trips (difference = − 3.312 times, p = 0.012). 
The analysis revealed that there were no statistically significant differ
ences between the treatment and control groups in terms of bus trips, e- 
bike trips, cycling trips, walking trips, and total trips.

4.2.2. Trip duration
As with trip frequency, a significant inter-group difference in rail use 

was found for both work and non-work trips between Group 1 and 
Group 3 (work trips, difference = 5.719 mins, p = 0.006; and non-work 
trips, difference = 9.507 mins, p = 0.031). For walking trips, a signifi
cant inter-group difference was found only for non-work trips between 
Group 1 and Group 3 (difference = − 9.014 mins, p = 0.007). The 
analysis found that there were no statistically significant differences 
between the treatment and control groups in terms of bus trips, car trips, 
e-bike trips, cycling trips, and total trips.

Table 4 
Results of multilevel regression analysis for urban rail transit and trip frequency.

Travel 
mode

Trip 
purpose

Group 
pair

Coefficient [95 % CI] P-value

Rail
Work 1–3 2.490 [− 0.151, 5.130] 0.066

2–3 1.292 [− 1.264, 3.847] 0.480

Non-work
1–3 5.569 [3.757, 7.380] <0.001***
2–3 4.063 [1.822, 6.304] <0.001***

Bus
Work

1–3 − 0.372 [− 2.817, 2.073] 0.146
2–3 − 1.171 [− 3.892, 1.550] 0.596

Non-work 1–3 − 0.578 [− 2.502, 1.346] 0.833
2–3 − 1.198 [− 3.135, 0.739] 0.336

Car

Work 1–3 − 3.541 [− 5.834–1.247] 0.005**
2–3 − 2.105 [− 4.414, 0.204] 0.071

Non-work 1–3
− 1.834 [− 3.381, 
− 0.286] 0.030*

2–3 0.117 [− 1.565, 1.799] 0.337

E-bike
Work 1–3 − 0.543 [− 2.566, 1.481] 0.896

2–3 0.647 [− 1.420, 2.715] 0.806

Non-work 1–3 − 0.554 [− 1.859, 0.751] 0.606
2–3 0.077 [− 1.588, 1.741] 0.392

Bicycle

Work 1–3
− 1.924 [− 3.609, 
− 0.239] 0.038*

2–3 − 1.277 [− 3.219, 0.665] 0.294

Non-work
1–3

− 1.693 [− 3.221, 
− 0.165]

0.045*

2–3 − 2.036 [− 3.744, 
− 0.328]

0.030*

Walk

Work
1–3 − 1.385 [− 4.000, 1.230] 0.446
2–3 − 0.894 [− 3.785, 1.996] 0.813

Non-work 1–3
− 2.729 [− 4.903, 
− 0.555] 0.021*

2–3 0.473 [− 1.479, 2.426] 0.950
Total Work 1–3 − 5.275 

[− 10.849,0.298]
0.065

2–3 − 3.508 [− 9.599, 2.583] 0.386

Non-work
1–3 − 1.819 [− 7.070, 3.431] 0.744
2–3 1.995 [− 3.420, 7.411] 0.702

Note: *: p < 0.05, **: p < 0.01, ***: p < 0.001. 95 % CI: 95 % coefficient interval.
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Table 5 
Results of multilevel regression analysis for urban rail transit and trip duration.

Travel 
mode

Trip 
purpose

Group 
pair

Coefficient [95 % CI] P-value

Rail
Work 1–3 3.149 [− 1.562, 7.860] 0.066

2–3 11.587 [0.100, 23.075] 0.042*

Non-work
1–3 5.299 [− 3.064, 13.663] 0.320
2–3 − 0.366 [− 8.122, 7.391] 0.973

Bus
Work

1–3 3.995 [− 7.651, 15.642] 0.749
2–3 2.156 [− 12.507, 16.818] 0.958

Non-work 1–3 1.350 [− 8.281, 10.982] 0.975
2–3 4.369 [− 6.721, 15.460] 0.651

Car

Work
1–3 − 10.142 [− 18.614, 

− 1.671]
0.009**

2–3 − 8.776 [− 19.605, 2.054] 0.167

Non-work
1–3 − 6.485 [− 15.227, 2.257] 0.218

2–3
− 2.155 [− 14.340, 
10.030]

0.961

E-bike
Work 1–3 − 0.892 [− 6.893, 5.109] 0.955

2–3 − 2.169 [− 6.655, 2.318] 0.512

Non-work
1–3 1.949 [− 0.778, 4.677] 0.242
2–3 1.010 [− 2.059, 4.078] 0.795

Bicycle
Work

1–3 − 1.881 [− 4.740, 0.979] 0.254
2–3 − 1.656 [− 6.101, 2.790] 0.695

Non-work
1–3 0.156 [− 1.925, 2.238] 0.925
2–3 0.481 [− 0.865, 1.827] 0.716

Walk

Work 1–3 − 0.926 [− 7.393, 5.542] 0.967
2–3 − 1.646 [− 7.682, 4.391] 0.887

Non-work 1–3
− 7.511 [− 12.448, 
− 2.573] 0.005**

2–3 − 0.737 [− 7.188, 5.714] 0.963
Total

Work 1–3
− 10.697 [− 13.385, 
3.991] 0.147

2–3 − 0.503 [− 15.653, 
14.648]

0.922

Non-work 1–3 − 5.241 [− 17.073, 6.592] 0.576
2–3 3.083 [− 11.032, 17.198] 0.923

Note: *: p < 0.05, **: p < 0.01, ***: p < 0.001. 95 % CI: 95 % coefficient interval.

Table 6 
Results of paired t-test analysis for before-after changes in trip frequency.

Travel 
mode

Trip 
purpose

Group 
pair

Difference in before-after 
changes (SD)

P-value

Rail
Work 1–3 3.192 (− 8.510) 0.006**

2–3 1.517 (9.861) 0.263

Non-work 1–3 5.520 (8.164) 0.008**
2–3 1.360 (8.790) 0.243

Bus
Work

1–3 − 3.781 (− 12.991) 0.132
2–3 − 1.048 (10.951) 0.485

Non-work
1–3 − 3.252 (12.797) 0.066
2–3 − 2.248 (10.709) 0.115

Car
Work 1–3 − 2.008 (− 8.539) 0.081

2–3 − 0.699 (9.437) 0.588

Non-work 1–3 − 3.312 (8.341) 0.012*
2–3 − 1.004 (10.836) 0.483

E-bike
Work

1–3 0.156 (− 7.732) 0.879
2–3 0.187 (7.018) 0.845

Non-work
1–3 − 0.373 (7.327) 0.669
2–3 − 2.428 (8.908) 0.142

Bicycle
Work 1–3 0.616 (− 7.436) 0.534

2–3 − 1.570 (7.707) 0.140

Non-work 1–3 1.048 (8.008) 0.274
2–3 − 3.086 (9.187) 0.113

Walk
Work

1–3 − 0.683 (− 11.917) 0.667
2–3 1.757 (9.839) 0.195

Non-work
1–3 − 0.958(10.939) 0.463
2–3 1.980 (8.834) 0.193

Total Work 1–3 − 2.508 (− 27.083) 0.487
2–3 0.144 (22.106) 0.962

Non-work
1–3 − 4.147 (25.463) 0.174
2–3 − 5.426 (23.642) 0.186

Note: *: p < 0.05, **: p < 0.01, ***: p < 0.001.

Table 7 
Results of paired t-test analysis for before-after changes in trip duration.

Travel 
mode

Trip 
purpose

Group 
pair

Difference in before-after 
changes (SD)

P-value

Rail
Work 1–3 5.719 (43.600) 0.006**

2–3 4.694 (44.924) 0.468

Non-work
1–3 9.507 (36.431) 0.031*
2–3 3.333 (30.161) 0.384

Bus
Work

1–3 − 6.351 (50.031) 0.342
2–3 3.959 (57.206) 0.630

Non-work 1–3 − 9.380 (54.835) 0.154
2–3 1.651 (54.885) 0.812

Car
Work 1–3 − 1.053 (3.244) 0.747

2–3 − 2.245 (30.191) 0.605

Non-work
1–3 − 1.549 (32.881) 0.693
2–3 − 1.667 (63.016) 0.834

E-bike
Work

1–3 2.281 (24.490) 0.483
2–3 1.082 (26.783) 0.779

Non-work 1–3 1.479 (19.864) 0.532
2–3 − 0.317 (17.692) 0.887

Bicycle
Work

1–3 1.491 (12.391) 0.367
2–3 − 1.020 (5.101) 0.168

Non-work
1–3 2.930 (15.318) 0.112
2–3 − 0.317 (15.342) 0.870

Walk
Work

1–3 − 4.000 (22.921) 0.193
2–3 − 5.163 (27.4599) 0.194

Non-work 1–3 − 9.014 (36.692) 0.007**
2–3 − 4.619 (39.002) 0.351

Total Work 1–3 − 10.351 (48.287) 0.111
2–3 − 8.082 (52.600) 0.288

Non-work
1–3 − 6.028 (64.294) 0.432
2–3 − 1.937 (76.836) 0.842

Note: *: p < 0.05, **: p < 0.01, ***: p < 0.001.

Table 8 
Results of difference-in-differences analysis for trip frequency.

Travel 
mode

Trip 
purpose

Group 
pair

DiD estimator [95 % 
CI]

P-value

Rail Work 1–3 3.241 [1.57, 4.91] 0.048*
2–3 1.268 [− 0.54, 3.08] 0.452

Non-work 1–3 5.937 [4.74, 7.14] <0.001***
2–3 4.081 [2.62, 5.54] 0.001**

Bus Work 1–3 − 0.213 [− 2.34, 1.92] 0.913
2–3 − 0.588 [− 2.76, 1.58] 0.772

Non-work 1–3 − 0.303 [− 2.45, 1.84] 0.839
2–3 − 0.895 [− 3.10, 1.31] 0.556

Car Work 1–3 − 3.634 [− 5.03, 
− 2.24]

0.071

2–3 − 0.622 [− 2.10, 0.85] 0.764
Non-work 1–3 − 2.730 [− 4.31, 

− 1.15]
0.062

2–3 0.169 [− 1.59, 1.93] 0.912
E-bike Work 1–3 − 0.342 [− 1.98, 1.29] 0.855

2–3 0.781 [− 0.93, 2.49] 0.686
Non-work 1–3 − 0.571 [− 2.44, 1.30] 0.680

2–3 0.762 [− 1.18, 2.71] 0.604
Bicycle Work 1–3 − 0.463 [− 2.41, 1.48] 0.781

2–3 0.684 [− 1.33, 2.70] 0.692
Non-work 1–3 0.799 [− 1.24, 2.84] 0.612

2–3 0.813 [− 1.30, 2.93] 0.611
Walk Work 1–3 − 4.632 [− 6.26, 

− 3.01]
0.019*

2–3 − 3.340 [− 5.19, 
− 1.49]

0.098

Non-work 1–3 − 3.353 [− 4.86, 
− 1.85]

0.027*

2–3 − 1.559 [− 2.89, 
− 0.23]

0.298

Total Work 1–3 − 6.043 [− 14.92, 2.83] 0.221
2–3 − 1.817 [− 6.89, 3.26] 0.717

Non-work 1–3 − 0.220 [− 5.70, 5.26] 0.960
2–3 3.371 [− 2.45, 9.20] 0.454

Note: *: p < 0.05, **: p < 0.01, ***: p < 0.001. 95 % CI: 95 % coefficient interval.
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4.3. Natural experiment analysis

Tables 8 & 9 present the DiD analysis of inter-group comparisons of 
trip frequency and duration after controlling for socio-demographic 
characteristics and objective neighborhood attributes.

4.3.1. Trip frequency
For rail use, the significant inter-group difference was found for non- 

work trips between two group pairs (group pair 1–3, difference = 5.937 
times, p < 0.001; and group pair 2–3, difference = 4.081 times, p =
0.001). Meanwhile, the analysis indicated a significant inter-group dif
ference for work trips, specifically between Group 1 and Group 3 (dif
ference = 3.241 times, p = 0.048). For walking trips, the comparisons 
between Group 1 and Group 3 presented a significant difference for both 
work (difference = − 4.632 times, p = 0.019) and non-work trips (dif
ference = − 3.353 times, p = 0.027). The analysis revealed that there 
were no statistically significant between-group differences for bus trips, 
car trips, cycling trips, e-bike trips, and total trips.

4.3.2. Trip duration
For rail and car trips, Group 1 showed a significant difference from 

Group 3 for work trips. For walking trips, Group 1 showed a significant 
difference from Group 3 for non-work trips. However, the analysis 
indicated that there was no statistically significant difference between 
Group 2 and Group 3. The difference and p values of these trips were: rail 
trips for work purpose, 6.230 min, p = 0.038; car trips for work purpose, 
− 10.499 min, p = 0.026; walking trips for non-work purpose, − 13.440 
min, p = 0.006. The analysis revealed no statistically significant inter
group differences in trip duration for bus trips, cycling trips, e-bike trips, 
and total trips.

Sensitivity analyses with different buffer ranges showed consistency 
with the main results (Appendix A).

4.4. The comparison between cross-sectional analyses and natural 
experiment

Table 10 shows the comparison between the results of the two cross- 
sectional analyses and the natural experiment. For the comparison be
tween Cross-sectional analysis 1 and the natural experiment, of the 28 
results analyzed, there were 15 different results and 13 identical ones. 
The main differentiation was that Cross-sectional analysis 1 revealed 
significant evidence for car and cycling trips, whereas the natural 
experiment did not detect any effect. Additionally, Cross-sectional 
analysis 2 indicated insignificant evidence for walking trips, while the 
natural experiment yielded significant evidence.

To enhance the models' robustness, we employed a more stringent p- 
value threshold (0.01) in the cross-sectional analyses and then compared 
the adjusted results to those of the natural experiment. Table 11 shows 
the comparison between the results of the two cross-sectional analyses 
(adjusted for P-value) and the natural experiment. Using a stricter sig
nificance level, the results of the cross-sectional analyses were closer to 
the natural experiment. Of the 28 results analyzed, Cross-sectional an
alyses 1 and 2 differed from the natural experiment in 5 and 4 results, 
respectively.

Table 12 presents the effect sizes of significant results from both the 
cross-sectional analysis (adjusted for P-value) and the natural experi
ment, allowing for a further comparison of the magnitudes of effect 
between the two methods. The results showed that the natural experi
ment analysis yielded slightly larger effect sizes compared to the cross- 
sectional analyses.

5. Discussion

5.1. Consistency between cross-sectional analyses and natural experiment

The results for the cross-sectional analyses and natural experiment 
came to a similar conclusion, showing that the new rail line resulted in 
an increase in the use of rail transit and a decrease in driving and 
walking, while there was no significant effect on the use of other modes 
and total trips. And the impact distance threshold was 800 m for most 
travel modes.

Specifically, for rail trips, the impact of the new metro system on the 
frequency of non-work rail trips extended up to a distance of 1600 m. 
This implies that individuals are willing to travel longer distances to 
access rail services for non-commuting purposes. In China, cycling has 
been recognized as a crucial mode of transportation for covering the first 
and last miles to and from rail stations, particularly in suburban areas 
with limited public transportation options (Deng and Zhao, 2022; Sun 
et al., 2020). Thus, there is a growing recognition of the need to consider 
cycling distances when defining the catchment areas of rail stations, 
aligning with broader urban planning objectives of transit-oriented 
development.

For car trips, the rail transit system only exhibited an impact on car 
trips with work purposes, while it had no influence on non-work trips. 
These findings suggest that rail transit appears to have a greater impact 
on reducing car travel for work purposes. This could be attributed to 
factors such as rush hour congestion, which may prompt individuals to 
consider alternative commuting modes (Ben-Elia and Ettema, 2011; De 
Vos et al., 2012). To reduce non-work car trips and encourage a shift 
towards public transportation, it is crucial to implement additional 
public transit infrastructure optimizations and policy management 
measures, such as parking management. These initiatives aim to facili
tate the transition from car usage to public transit by improving acces
sibility and convenience.

Similar findings were observed for walking trips, indicating that non- 
work walking behavior was significantly influenced. These findings 
present a discrepancy compared to previous studies that have indicated 
that proximity to new metro stations can promote active travel, partic
ularly walking (Huang et al., 2017). One possible explanation could be 

Table 9 
Results of difference-in-differences analysis for trip duration.

Travel 
mode

Trip 
purpose

Group 
pair

DiD estimator [95 % CI] P-value

Rail Work 1–3 6.230 [1.65, 10.81] 0.038*
2–3 6.257 [1.15, 11.36] 0.250

Non-work 1–3 8.712 [1.94, 15.48] 0.068
2–3 − 0.017 [− 7.15, 7.11] 0.997

Bus Work 1–3 3.508 [− 5.33, 12.35] 0.666
2–3 5.858 [− 3.21, 14.92] 0.950

Non-work 1–3 − 5.446 [− 15.23, 4.34] 0.337
2–3 − 0.403 [− 11.72, 10.92] 0.108

Car Work 1–3 − 10.499 [− 18.42, 
− 2.58]

0.026*

2–3 − 10.196 [− 15.86, 
− 4.53]

0.355

Non-work 1–3 − 11.955 [− 19.63, 
− 4.28]

0.079

2–3 − 4.783 [− 13.81, 4.24] 0.524
E-bike Work 1–3 5.027 [− 2.26, 12.26] 0.345

2–3 4.588 [− 2.05, 11.22] 0.384
Non-work 1–3 0.830 [− 2.25, 3.91] 0.692

2–3 − 0.603 [− 4.22, 3.01] 0.789
Bicycle Work 1–3 − 0.516 [− 2.30, 1.27] 0.778

2–3 − 0.756 [− 2.89, 1.38] 0.756
Non-work 1–3 2.739 [− 0.36, 5.84] 0.182

2–3 1.268 [− 2.14, 4.67] 0.408
Walk Work 1–3 − 7.840 [− 13.24, − 2.44] 0.099

2–3 − 5.374 [− 9.61, − 1.14] 0.269
Non-work 1–3 − 13.440 [− 21.32, 

− 5.56]
0.006**

2–3 − 6.341 [− 14.80, 2.11] 0.217
Total Work 1–3 − 4.090 [− 15.05, 6.87] 0.687

2–3 0.377 [− 9.85, 10.60] 0.972
Non-work 1–3 − 18.560 [− 31.73, 

− 5.39]
0.122

2–3 − 12.073 [− 26.96, 2.81] 0.176

Note: *: p < 0.05, **: p < 0.01, ***: p < 0.001. 95 % CI: 95 % coefficient interval.
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Table 10 
The comparison between the results of the cross-sectional analyses and the natural experiment.

Travel 
mode

Trip 
purpose

Group 
pair

Trip frequency Trip duration

Cross-sectional 
analysis1

Cross-sectional 
analysis2

Natural 
experiment

Cross-sectional 
analysis1

Cross-sectional 
analysis2

Natural 
experiment

Rail Work 1–3 0 + + 0 + +

2–3 0 0 0 þ 0 0
Non-work 1–3 + + + 0 þ 0

2–3 + 0 + 0 0 0
Bus Work 1–3 0 0 0 0 0 0

2–3 0 0 0 0 0 0
Non-work 1–3 0 0 0 0 0 0

2–3 0 0 0 0 0 0
Car Work 1–3 ¡ 0 0 − 0 −

2–3 0 0 0 0 0 0
Non-work 1–3 ¡ ¡ 0 0 0 0

2–3 0 0 0 0 0 0
E-bike Work 1–3 0 0 0 0 0 0

2–3 0 0 0 0 0 0
Non-work 1–3 0 0 0 0 0 0

2–3 0 0 0 0 0 0
Bicycle Work 1–3 ¡ 0 0 0 0 0

2–3 0 0 0 0 0 0
Non-work 1–3 ¡ 0 0 0 0 0

2–3 ¡ 0 0 0 0 0
Walk Work 1–3 0 0 − 0 0 0

2–3 0 0 0 0 0 0
Non-work 1–3 − 0 − − − −

2–3 0 0 0 0 0 0
Total Work 1–3 0 0 0 0 0 0

2–3 0 0 0 0 0 0
Non-work 1–3 0 0 0 0 0 0

2–3 0 0 0 0 0 0

Note: Significant evidence was marked (+) or (− ) to indicate the direction of the association, and (0) to indicate insignificant results. The different outcomes of the 
cross-sectional analyses and the natural experiment were bolded for legibility.

Table 11 
The comparison between the results of the cross-sectional analyses (adjusted for P-value) and the natural experiment.

Travel 
mode

Trip 
purpose

Group 
pair

Trip frequency Trip duration

Cross-sectional 
analysis1

Cross-sectional 
analysis2

Natural 
experiment

Cross-sectional 
analysis1

Cross-sectional 
analysis2

Natural 
experiment

Rail Work 1–3 0 + + 0 + +

2–3 0 0 0 0 0 0
Non-work 1–3 + + + 0 0 0

2–3 + 0 + 0 0 0
Bus Work 1–3 0 0 0 0 0 0

2–3 0 0 0 0 0 0
Non-work 1–3 0 0 0 0 0 0

2–3 0 0 0 0 0 0
Car Work 1–3 ¡ 0 0 − 0 −

2–3 0 0 0 0 0 0
Non-work 1–3 0 0 0 0 0 0

2–3 0 0 0 0 0 0
E-bike Work 1–3 0 0 0 0 0 0

2–3 0 0 0 0 0 0
Non-work 1–3 0 0 0 0 0 0

2–3 0 0 0 0 0 0
Bicycle Work 1–3 0 0 0 0 0 0

2–3 0 0 0 0 0 0
Non-work 1–3 0 0 0 0 0 0

2–3 0 0 0 0 0 0
Walk Work 1–3 0 0 − 0 0 0

2–3 0 0 0 0 0 0
Non-work 1–3 0 0 − − − −

2–3 0 0 0 0 0 0
Total Work 1–3 0 0 0 0 0 0

2–3 0 0 0 0 0 0
Non-work 1–3 0 0 0 0 0 0

2–3 0 0 0 0 0 0

Note: Strong evidence was marked (+) or (− ) to indicate the direction of the association, and (0) to indicate insignificant results. The different outcomes of the cross- 
sectional analyses and the natural experiment were bolded for legibility.
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that the introduction of new rail transit options improves the conve
nience of daily travel from residential areas to various destinations, such 
as restaurants or shopping malls. Furthermore, the pedestrian walking 
environment around rail stations in Wuhan suffers from low quality, 
primarily due to inadequate sidewalk infrastructure and challenging 
climatic conditions. As a result, some residents may opt for rail transit 
due to its comfort and speed advantages over walking. Therefore, it is 
essential to integrate comprehensive urban planning interventions 
around rail stations (such as pedestrian infrastructure) in conjunction 
with urban rail investments to achieve a synergistic effect in enhancing 
sustainable travel behavior.

5.2. Discrepancy between cross-sectional analyses and natural experiment

Comparing the results of the cross-sectional analyses and the natural 
experiment indicated that improving the model for the cross-sectional 
analyses (controlling for additional variables or combining it with the 
PSM method), while setting a stricter p-value (0.01), can make the cross- 
sectional analysis produce similar results to those of the natural exper
iment. This suggests that a well-designed model combined with a stricter 
significance level can help to enhance the consistency and reliability of 
the cross-sectional analysis.

Upon further comparison of effect sizes, it was found that the natural 
experiment analysis produced larger effect sizes in comparison to the 
cross-sectional analyses, indicating a more pronounced impact of the 
new rail line on travel behavior. One potential explanation is the causal 
nature of the study design, which helps isolate the effects of the rail line 
from other confounding factors, thus providing more robust evidence of 
the intervention's impact (Leatherdale, 2019). Moreover, the natural 
experiment design may capture unmeasured or latent factors that cross- 
sectional analyses might miss (Streeter et al., 2017). For instance, the 
anticipation and excitement surrounding the upcoming rail line, as well 
as the subsequent cultural and behavioral shifts within the community, 
could contribute to the observed larger effect sizes. These contextual 
factors, which are difficult to capture in cross-sectional studies, may 
have a significant influence on travel behavior.

To minimize discrepancies in effect results between cross-sectional 
analyses and natural experiments, optimizing cross-sectional studies 
can be achieved through various strategies. These include enhancing 
control over confounding factors, utilizing advanced statistical tech
niques like propensity score matching (PSM) or instrumental variable 
approaches, and conducting sensitivity analyses and robustness checks. 
By implementing these methodological enhancements, cross-sectional 
studies can yield more reliable and robust results, serving as a valu
able complement to natural experiments when research resources are 
limited.

5.3. Limitations and future directions

There are several limitations to this study. Firstly, the reliance on 
self-reported data collected through travel surveys may introduce recall 
bias and other measurement biases. Future studies can enhance the 
assessment of individuals' travel behavior by combining subjective 
measurement methods, such as traditional surveys, with objective ones, 
such as GPS trajectory data. This approach allows for a more compre
hensive and accurate tracking of travel behavior by capturing both self- 
reported information and real-time, location-based data. Secondly, the 
subjective neighborhood characteristics and travel attitudes were 
measured by a single item, which may limit the reliability of this vari
able. Future studies could consider employing multiple items and con
ducting Confirmatory Factor Analysis (CFA) to measure different aspects 
of subjective neighborhood characteristics and travel attitudes. Thirdly, 
the study's limited scope to a single city indeed restricts the findings' 
generalizability. In particular, more comparative empirical studies are 
required to further validate the feasibility and accuracy of cross- 
sectional studies, taking into account specific contextual factors.

6. Conclusion

This study used both cross-sectional and natural experiment analyses 
to evaluate the treatment effects of urban rail transit on individuals' 
travel behavior based on the same dataset. The findings from both the 
cross-sectional analyses and the natural experiment yielded a consistent 
outcome, indicating that the introduction of the new rail infrastructure 
resulted in an increase in rail transit usage and a decrease in both driving 
and walking. The comparison between the cross-sectional analyses and 
the natural experiment revealed that refining the model used in the 
cross-sectional analyses, combined with a more stringent p-value 
threshold, can lead to cross-sectional analysis results that closely align 
with those obtained from the natural experiment. These findings suggest 
that well-designed cross-sectional studies can offer reliable insights and 
serve as a cost-effective alternative to resource-intensive natural 
experiments.
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Table 12 
The comparison of the effect sizes of the cross-sectional analyses (adjusted for P-value) and the natural experiment.

Travel 
mode

Trip 
purpose

Group 
pair

Trip frequency Trip duration

Cross-sectional 
analysis1

Cross-sectional 
analysis2

Natural 
experiment

Cross-sectional 
analysis1

Cross-sectional 
analysis2

Natural 
experiment

Rail Work 1–3 / 3.192 3.241 / 5.719 6.230
Non-work 1–3 5.569 5.520 5.973 / / /

2–3 4.063 / 4.081 / / /
Car Work 1–3 / / / − 10.142 / − 10.499

2–3 / / / / / /
Non-work 1–3 / / / / / /

2–3 / / / / / /
Walk Work 1–3 / / / / / /

2–3 / / / / / /
Non-work 1–3 − 2.729 / − 3.353 − 7.511 − 9.014 − 13.440

2–3 / / / / / /

Note: /: Results that were not significant or lacked significant results for comparison were not included in the analysis.
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Appendix A. Appendix

Table A1 
Sensitivity analysis: results of difference-in-differences analysis for trip frequency.

Travel mode Trip purpose Group pair Sensitivity analysis 1 Sensitivity analysis 2

DiD estimator [95 % CI] P-value DiD estimator [95 % CI] P-value

Rail Work 1–3 0.880 [0.05, 1.72] 0.039* 1.048 [0.24, 1.86] 0.011*
2–3 0.758 [− 0.51, 1.53] 0.153 0.033 [− 0.96, 1.03] 0.948

Non-work 1–3 0.865 [0.20, 1.53] 0.011* 0.924 [0.27, 1.57] 0.005**
2–3 0.758 [0.01, 1.51] 0.043* 0.473 [0.03, 0.92] 0.048*

Bus Work 1–3 0.205 [− 0.69, 1.11] 0.654 − 0.278 [− 1.23, 0.68] 0.568
2–3 0.058 [− 0.76, 0.88] 0.889 − 0.381 [− 1.51, 0.75] 0.506

Non-work 1–3 − 0.268 [− 0.96, 0.43] 0.448 − 0.357 [− 1.07, 0.35] 0.325
2–3 0.058 [− 0.76, 0.88] 0.889 − 0.334 [− 1.17, 0.50] 0.432

Car Work 1–3 − 0.989 [− 1.89, − 0.09] 0.032* − 0.606 [− 1.54, − 0.03] 0.075
2–3 − 1.300 [− 2.13, 1.47] 0.102 − 0.055 [− 1.19, 1.08] 0.923

Non-work 1–3 − 0.454 [− 0.98, 0.07] 0.078 − 0.535 [− 1.09, 0.02] 0.067
2–3 − 1.300 [− 3.07, 0.47] 0.102 0.360 [− 0.54, 1.26] 0.430

E-bike Work 1–3 − 0.861 [− 2.19, 0.32] 0.155 − 0.125 [− 1.06, 0.81] 0.793
2–3 − 1.024 [− 2.26, 0.21] 0.114 − 0.208 [− 1.30, 0.89] 0.709

Non-work 1–3 − 0.214 [− 0.92, 0.49] 0.551 − 0.245 [− 0.96, 0.47] 0.504
2–3 − 0.608 [− 4.90, 3.68] 0.780 − 0.598 [− 0.94, 0.26] 0.172

Bicycle Work 1–3 − 0.174 [− 2.58, 2.24] 0.887 − 0.464 [− 2.83, 1.90] 0.700
2–3 − 1.854 [− 4.11, 0.41] 0.107 − 1.556 [− 4.89, 1.78] 0.359

Non-work 1–3 1.055 [− 1.18, 3.29] 0.353 1.091 [− 1.44, 3.62] 0.397
2–3 − 1.853 [− 4.11, 0.41] 0.107 − 0.129 [− 3.34, 3.09] 0.937

Walk Work 1–3 − 1.341 [− 2.16, − 0.53] 0.001** − 0.335 [− 0.64, − 0.03] 0.049*
2–3 − 1.402 [− 2.19, − 0.61] 0.001** − 0.224 [− 1.28, 0.83] 0.677

Non-work 1–3 − 1.083 [− 2.20, 0.03] 0.065 − 0.308 [− 0.67, 0.05] 0.076
2–3 − 1.402 [− 3.41, 0.61] 0.101 − 0.325 [− 0.97, 0.32] 0.324

Total Work 1–3 − 6.562 [− 13.41, 1.29] 0.160 − 3.334 [− 10.56, 3.89] 0.365
2–3 − 10.637 [− 15.07, 1.95] 0.102 − 5.040 [− 14.95, 4.91] 0.319

Non-work 1–3 0.767 [− 6.19, 7.72] 0.829 − 2.201 [− 9.63, 5.23] 0.561
2–3 − 10.637 [− 23.22, 1.95] 0.102 − 2.361 [− 11.55, 6.83] 0.613

Note:
(a) Sensitivity analysis 1: Group 1: the first treatment group (respondents who lived within a distance of 700 m from the stations). Group 2: the second treatment group 
(respondents who lived within a distance of 700 to 1500 m from the stations). Group 3: the control group (respondents who lived within a distance of 1500 to 2400 
mfrom the stations).
(b) Sensitivity analysis 2: Group 1: the first treatment group (respondents who lived within a distance of 900 m from the stations). Group 2: the second treatment group 
(respondents who lived within a distance of 900 to 1700 m from the stations). Group 3: the control group (respondents who lived within a distance of 1700 to 2400 
mfrom the stations).
(c) *: p < 0.05, **: p < 0.01, ***: p < 0.001.
(d) 95 % CI: 95 % coefficient interval.

Table A2 
Sensitivity analysis: results of difference-in-differences analysis for trip duration.

Travel mode Trip purpose Group pair Sensitivity analysis 1 Sensitivity analysis 2

DiD estimator [95 % CI] P-value DiD estimator [95 % CI] P-value

Rail Work 1–3 0.530 [0.09, 0.97] 0.048* 4.207 [0.60, 7.81] 0.048*
2–3 0.876 [− 7.82, 10.07] 0.585 0.853 [− 13.33, 15.04] 0.906

Non-work 1–3 7.166 [− 0.71, 15.04] 0.054 7.086 [− 0.98, 15.16] 0.086
2–3 7.994 [− 2.73, 18.72] 0.172 − 0.081 [− 10.83, 10.67] 0.525

Bus Work 1–3 − 1.310 [− 21.22, 18.60] 0.897 − 2.024 [− 19.60, 15.55] 0.821
2–3 − 0.043 [− 17.56, 17.48] 0.996 − 3.383 [− 25.09, 18.33] 0.759

Non-work 1–3 − 7.892 [− 20.50, 4.72] 0.219 − 4.312 [− 14.27, 5.65] 0.396
2–3 − 3.014 [− 9.04, 15.07] 0.624 5.041 [− 8.39, 18.48] 0.461

Car Work 1–3 − 5.646 [− 12.01, 0.72] 0.056 − 8.498 [− 16.43, − 0.57] 0.046*
2–3 − 4.116 [− 22.91, 14.68] 0.667 − 13.397 [− 38.57, 11.77] 0.295

Non-work 1–3 − 2.651 [− 5.44, 0.14] 0.072 − 2.765 [− 5.84, 0.31] 0.081
2–3 − 2.084 [− 15.36, 11.19] 0.758 − 1.010 [− 11.79, 9.77] 0.558

E-bike Work 1–3 2.347 [− 5.20, 9.90] 0.541 3.745 [− 5.16, 12.65] 0.409

(continued on next page)
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Table A2 (continued )

Travel mode Trip purpose Group pair Sensitivity analysis 1  Sensitivity analysis 2 

DiD estimator [95 % CI] P-value DiD estimator [95 % CI] P-value

2–3 2.014 [− 5.50, 9.53] 0.599 2.558 [− 7.39, 12.51] 0.613
Non-work 1–3 − 1.474 [− 6.20, 3.25] 0.540 − 0.914 [− 4.61, 2.78] 0.628

2–3 − 0.609 [− 4.90, 3.68] 0.780 − 0.587 [− 5.33, 4.16] 0.808
Bicycle Work 1–3 1.640 [− 3.58, 6.86] 0.537 1.068 [− 2.89, 5.03] 0.596

2–3 0.038 [− 4.56, 4.64] 0.987 − 0.444 [− 6.06, 5.17] 0.876
Non-work 1–3 1.600 [− 0.66, 3.86] 0.164 1.528 [− 1.08, 4.14] 0.251

2–3 − 0.288 [− 2.84, 2.27] 0.825 − 0.548 [− 4.43, 3.33] 0.781
Walk Work 1–3 − 3.386 [− 7.16, 0.39] 0.098 − 7.389 [− 16.87, 2.09] 0.126

2–3 − 6.208 [− 14.58, 2.17] 0.146 − 8.420 [− 19.37, 2.53] 0.131
Non-work 1–3 − 8.166 [− 17.65, 1.32] 0.091 − 10.329 [− 19.87, − 0.78] 0.034*

2–3 − 9.995 [− 23.58, 3.59] 0.120 − 7.547 [− 19.21, 4.11] 0.204
Total Work 1–3 − 5.826 [− 27.43, 15.78] 0.596 − 8.715 [− 28.14, 10.71] 0.378

2–3 − 12.192 [− 31.73, 7.35] 0.221 − 21.613 [− 46.66, 3.44] 0.100
Non-work 1–3 − 11.418 [− 28.35, 5.51] 0.186 − 7.838 [− 23.97, 8.29] 0.340

2–3 − 1.967 [− 17.47, 13.54] 0.803 − 2.066 [− 21.24, 17.11] 0.832

Note:
(a) Sensitivity analysis 1: Group 1: the first treatment group (respondents who lived within a distance of 700 m from the stations). Group 2: the second treatment group 
(respondents who lived within a distance of 700 to 1500 m from the stations). Group 3: the control group (respondents who lived within a distance of 1500 to 2400 
mfrom the stations).
(b) Sensitivity analysis 2: Group 1: the first treatment group (respondents who lived within a distance of 900 m from the stations). Group 2: the second treatment group 
(respondents who lived within a distance of 900 to 1700 m from the stations). Group 3: the control group (respondents who lived within a distance of 1700 to 2400 
mfrom the stations).
(c) *: p < 0.05, **: p < 0.01, ***: p < 0.001.
(d) 95 % CI: 95 % coefficient interval.
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