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A B S T R A C T   

Recent research has treated new rail transit systems as ‘natural experiments’, and while they have 
generally resulted in increased ridership, the underlying reasons for this remain unclear. To 
address this, we undertook a systematic review and meta-analysis of natural experiment studies 
published between 2000 and 2023 to synthesize the effect of rail transit on various travel 
behavior. We selected a total of sixteen studies for review, of which eight were suitable for meta- 
analysis. The pooled results showed that the introduction of rail transit significantly increased the 
mode share of rail while significantly decreasing the mode share of bus and car, and vehicle miles 
traveled (VMT). Our findings suggest that rail transit has the potential to promote sustainable 
travel behavior. However, to establish a more reliable association, further high-quality research is 
needed to examine the nuanced context, extend the follow-up duration, incorporate objective 
measures, and appropriately define the control group.   

1. Introduction 

The growing reliance on cars in urban areas has led to issues such as traffic congestion and air pollution. To address these chal-
lenges, many local and regional governments worldwide have made, or plan to make, substantial investments in urban rail transit 
systems, with the aim of reducing society’s car dependence and promoting sustainable travel behavior (Loo et al., 2010). However, 
urban rail transit project is one of the most costly transportation investments in a city or metropolitan area, as they require significant 
and irreversible investments in long-lived assets that may impose a substantial financial burden on governments (Pulido et al., 2018). 
Therefore, in planning and designing urban rail transit systems, it is essential to consider their effects on individuals’ travel behavior, 
urban mobility, and sustainability (Jeihani et al., 2013). Indeed, there is an ongoing debate on the effectiveness of investments in urban 
rail transit, which hinges on the degree to which rail transit promotes sustainable mobility and, in particular, converts car users to rail 
transit users (Ingvardson and Nielsen, 2018). As some researchers have argued, rail transit infrastructure can only benefit the 
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environment and society if the increased train traffic comes from private vehicles rather than buses or non-motorized forms of 
transportation such as walking and cycling (Lund et al., 2006). 

In response to these arguments, numerous empirical studies have examined the effects of urban rail transit systems on travel 
behavior. However, most studies are based on cross-sectional data, indicating only associations among variables, and it remains 
unclear whether rail transit development can lead to meaningful travel behavioral changes (Chatterjee and Carey, 2018). To make 
causal inferences, randomized controlled trials (RCTs) would be required to track the same set of individuals before and after the 
implementation of the rail transit system, and thus isolate its treatment effect (Leatherdale, 2019). However, RCTs are often infeasible 
in travel or urban planning research because researchers cannot manipulate transportation interventions and randomly assign ob-
servations to treatment or control groups. Natural experiments, which allow the exploitation of opportunities presented by naturally 
occurring interventions, can serve as an alternative to RCTs (Leatherdale, 2019). 

Researchers have considered the launch of new rail lines and stations as interventions to conduct natural experiments and evaluate 
the treatment effects of such infrastructure on individuals’ travel behavior (Dai et al., 2020; Engebretsen et al., 2017). While many 
studies have reported an increase in rail ridership after the rail transit intervention (Deng and Zhao, 2022; Ewing and Hamidi, 2014; 
Spears et al., 2017; Xie, 2016), there is no consensus on the source of this increase. Although the car-to-rail modal shift has been 
observed in previous evidence (Huang et al., 2019; Ibraeva et al., 2021), consistent with the expectations, some studies have indicated 
that newly built rail transit infrastructures may not necessarily reduce car use, and the increased rail usage could result from induced 
travel demand or substitution for other travel modes (Cervero, 2007; Chatman, 2013; Sun et al., 2020). Furthermore, the mixed results 
may stem from various intervention contexts, follow-up durations, travel behavior measures, and sampling and analysis methods, 
making it difficult to compare them directly. Therefore, it is necessary to synthesize and quantify the mixed evidence from natural 
experiment studies to clarify the effectiveness of rail transit interventions. 

Previous reviews have explored the effects of various built environment interventions on travel behavior, but none have specifically 
focused on rail transit interventions (Ewing and Cervero, 2010; Wang and Zhou, 2017).To address this gap, this study aims to conduct a 
systematic review of natural experiment studies that have quantitatively estimated the effects of urban rail transit systems on travel 
behavior. Furthermore, this study aims to synthesize all available evidence through a meta-analysis to provide overall effect estimates 
of rail transit systems on travel behavior. The findings of this study have the potential to provide guidelines for future research and 
inform policymakers on rail transit investment decisions. 

2. Methods 

2.1. Systematic review and meta-analysis (SR/MA) 

SR/MAs are important tools for synthesizing empirical evidence and informing policy-making in various fields (Mikolajewicz and 
Komarova, 2019; Tawfik et al., 2019). In this study, we intend to undertake a systematic review and meta-analysis of natural 
experiment studies that have quantitatively estimated the effects of urban rail transit systems on travel behavior. 

A systematic review involves the logical synthesis and critical appraisal of multiple studies focused on a well-defined research topic 
(DeLuca et al., 2008), while a meta-analysis is a statistical estimation of the results from each individual study that generates a pooled 
estimate of the problem under study (Gopalakrishnan and Ganeshkumar, 2013). By consolidating evidence from a large body of 
complex studies, a meta-analysis can provide more trustworthy treatment effect estimates than individual studies by increasing the 
overall sample size. However, it is crucial to acknowledge that meta-analyses may average differences among homogeneous studies 
and may not be representative of any individual study, particularly if studies are conducted in different urban or cultural contexts 
(Feinstein, 1995; Maziarz, 2022). The SR/MA used in this study follows the widely accepted guidelines of the Cochrane Handbook for 
Systematic Reviews of Interventions (Higgins et al., 2019) and Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement 
(Moher et al., 2009). 

2.2. Search and selection procedure 

The present study conducted comprehensive literature research using three electronic databases, namely Web of Science, Scopus, 
and Transportation Research Information Service, in January 2023. In addition, the reference lists of selected articles were combed 
through to locate any further relevant studies. The search terms used in the query were carefully selected and included, but were not 
limited to, the following: rail, metro, subway, travel, transit, commute, driving, walking, natural experiment, quasi-experiment, 
longitudinal, retrospective and prospective. 

The eligibility criteria for selecting studies are as follows: (1) publication after the year 2000; (2) use of quasi-experiment or natural 
experiment study design, such as before-and-after and experimental-control study design with an urban rail transit intervention; (3) 
inclusion of a measure of travel behavior change as an outcome, such as travel mode share, trip frequency, trip duration, trip distance, 
and vehicle miles traveled (VMT) / vehicle kilometers traveled (VKT); and (4) written in English. Various types of urban rail transit, 
including light rail and heavy rail, were included to obtain comprehensive evidence. 

To ensure that a meta-analysis could be conducted, two additional inclusion criteria were required for studies: (1) reporting pre- 
and post-travel behavioral changes with corresponding mean and standard deviations (SDs), or other values that can be used to 
calculate SDs, such as 95 % confidence intervals (CIs), standard errors (SEs), p-values, and t-values (Higgins et al., 2019), and (2) 
having identical travel behavior outcomes that can be pooled with the outcomes of other studies for effect size calculation (with a 
minimum of three instances of each travel behavior outcome). 
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Following the initial search and deduplication, two researchers (JW and XW) separately reviewed the titles and abstracts of all 
records, and removed any ineligible studies. Articles selected by one or both researchers were undergone to full-text assessment, which 
was also performed independently by both researchers. Any disagreements between researchers regarding eligibility for full-text 
assessment were settled through consultation with a third researcher (YL). 

Fig. 1 shows the search process. In total, 4,365 studies were identified, among which 123 studies underwent full-text assessment. 
Studies were excluded if they were deemed unrelated to urban rail transit or travel behavior outcomes, or if they did not conduct a 
longitudinal study. During the full-text assessment, 107 of 123 articles were excluded. Of those excluded, 23 studies did not focus on 
travel behavior measures, 49 studies lacked rigor in research design by not including control groups, and 35 studies did not utilize 
statistical models to estimate the treatment effect of urban rail transit. Ultimately, the systematic review comprised 16 studies, with 8 
of them being qualified for the meta-analysis. 

2.3. Quality assessment 

We use the Quality Assessment Tool for Quantitative Studies (Thomas et al., 2004) to evaluate the quality of the eight studies 
eligible for the meta-analysis. The tool is a universal assessment instrument created to evaluate various intervention studies, including 
RCTs and natural experiments. It has been considered suitable for systematic reviews that assess the efficacy of public health in-
terventions (Armijo-Olivo et al., 2012). The tool comprised six domains: (1) selection bias (representative of participants), (2) study 
design (random allocation of treatment and control group), (3) confounders (control of confounders during the study design or 
analysis), (4) blinding (assessors and participants’ awareness of the intervention status and research questions), (5) data collection 
methods (reliability and validity of outcome measures) and (6) withdrawals and dropouts (the extent to which participants withdraw 
or drop out of a study before completing the study). Each domain was assessed as weak, moderate, or strong according to the stan-
dardized guide and dictionary (Thomas et al., 2004). The study’s overall rating was based on these six domains. Studies with two or 
more weak ratings were characterized as weak. Studies with less than four strong ratings and one weak rating were classified as 
moderate, while those with four or more strong ratings and no weak ratings were evaluated as strong. Two researchers (JW and WC) 
conducted the assessment. If there were any differences of opinion between the two researchers, they were resolved through 
consultation with a third researcher (YL). 

2.4. Statistical analysis 

Given the variation in the methods utilized to estimate the effects of the intervention, both in magnitude and direction, we applied 
the random-effects meta-analysis model tool in Review Manager 5.3 to determine the overall intervention effects (Higgins et al., 2019). 
A two-stage process employed calculates the overall effect size (Fig. 2): (1) The effective size of individual studies is computed as the 

Fig. 1. Flowchart for the systematic review and meta-analysis search process.  
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mean difference, which is the difference between the treatment and control groups for the change of an outcome before and after the 
intervention. and (2) the pooled effect size across all studies is computed after weighting the effect sizes for precision, where the 
precision is proportional to the standard error of the mean (SEM). When the standard deviation (SD) is smaller and the sample size is 
larger, the SEM is reduced. A smaller SEM is indicative of a higher level of precision in estimating the mean (Andrade, 2020). The 
standard error of the pooled effect size is applied to calculate a confidence interval (CI) and a p-value indicating the precision of the 
pool estimate and the strength of the evidence respectively. Heterogeneity is assessed by the I2 statistic, which represents the pro-
portion of total variation in effect sizes that is due to heterogeneity, with values above 50 % indicating substantial heterogeneity (a 
detailed explanation of the calculation method can be found in Higgins et al. (2003)). Forest plots (Fig. 2) are a graphical represen-
tation of the results of a meta-analysis, providing a visual summary of the effect sizes and confidence intervals for each study, as well as 
an overall summary estimate of the effect size and its confidence interval. 

Fig. 2. Forest plots for seven types of travel behavior outcomes following urban rail transit interventions. Note: a. The square shape represents the 
effect size for each study. The center of each shape represents the point estimate (i.e., mean difference), and the horizontal lines extending from each 
shape represent the confidence interval for that estimate. The diamond shape at the bottom of the plot represents the pooled effect size across all 
studies. The center of the diamond represents the point estimate of the pooled effect size, and the width of the diamond represents the confidence 
interval. If a diamond does not cross the vertical line in the middle (i.e., a mean difference of zero), this suggests that the pooled estimate is sta-
tistically significant. b. Note: In order to make a standardized comparison across the studies, we calculated the effects in terms of percentage change 
for the total number of trips, the total trip distance and VMT variables. 
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3. Results 

3.1. Systematic review 

There were 16 studies eligible for inclusion in the systematic review (Appendix Table 1). Most of the studies were conducted in 
China (n = 6) and the United States (n = 5), with the remaining five studies conducted in Singapore (n = 2), Norway (n = 1), the United 
Kingdom (n = 1), and Portugal (n = 1). Two types of rail transit intervention were examined: light rail (n = 7) and heavy rail (n = 9). 
The studies employed three types of research design, namely prospective longitudinal study (n = 4), in which data were collected from 
a targeted group at baseline and followed over a period of time; retrospective longitudinal study (n = 2), in which data were collected 
from past records or surveys of a targeted group; and repeated cross-sectional study (n = 10), in which data were collected from 
different groups of individuals at multiple points of time. Most studies used travel surveys as their data source (n = 11), while others 
used official transport data (n = 3), mobile phone data (n = 1), and passenger counts (n = 1). The follow-up periods varied from 1 to 21 
years, with the longitudinal studies (1 to 2.5 years) generally shorter follow-up durations than the repeated cross-sectional studies 
(mostly ≥ 4 years). The data analysis units were mainly individual person (n = 10), while household, community, city and other units 
were also used. The sample sizes at the personal or household level varied greatly, ranging from 285 to 21,859 at baseline and from 173 
to 23,960 at follow-up, with repeated cross-sectional studies usually involving larger sample sizes (mostly > 1,000 participants) than 
longitudinal studies (mostly < 1,000 participants). For the prospective longitudinal studies, the retention rates in the follow-up surveys 
were generally above 50 %, except for one large-sample study (32.6 %) (Sun et al., 2020). 

The definitions of the terms ‘treatment’ and ‘control’ groups were primarily based on the level of convenience in accessing the rail 
service. In most studies, a single distance threshold to a new rail line or rail station was used to differentiate the treatment and control 
groups (e.g., 500 m, 1000 m). Participants living within the threshold were regarded as the treatment group, while those living beyond 
the threshold were classified as the control group. Some studies set control corridors that shared similar attributes with rail transit 
corridors but lacked a rail transit service (Ewing and Cervero, 2010; Senior, 2009). The DiD method was most commonly used to 
estimate the intervention effects (n = 9), while some other statistical methods, such as the ordered response model, structural 
equations model, and propensity score matching were also employed. 

The travel behavior metrics analyzed in the reviewed studies included mode share, trip frequency/ number of each travel mode 
(such as rail, car, bus, and active travel), VMT/VKT, total number of trips and total trip distance. Some studies also examined ridership 
and travel time (Liu and Li, 2020; Sun et al., 2020; Werner et al., 2016). The association between each travel behavior metric and the 
rail transit intervention was coded positive, negative, or non-significant, based on the findings of each study (Table 1). 

Overall, the establishment of urban rail transit was found to have a positive association with increased usage of rail travel. 
Furthermore, most studies reported a negative association between urban rail transit and the usage of bus and car travel, while no 
significant associations were found between urban rail transit and the total number of trips. The results for active travel were mixed, 

Table 1 
Associations between rail transit and travel behavior outcomes of the studies in the systematic review.  

Travel behavior variables Positive Negative No significance 

Total number/frequency of trips 2 0 3 
Total trip distance 1 0 2 
Total travel time of trips 0 0 1 
Pooled of any total travel behavior index 3 0 6 
Mode share of car 0 2 1 
Number/frequency of car trips 0 2 1 
Travel time of car trips 0 0 1 
VMT/VKT 0 4 0 
AADT 0 1 0 
Pooled of any car travel index 0 9 3 
Mode share of rail 3 0 0 
Number/frequency of rail trips 4 0 0 
Distance of rail trips 1 0 0 
Travel time of rail trips 2 0 0 
Pooled of any rail travel index 10 0 0 
Mode share of bus 0 1 2 
Number/frequency of bus trips 0 1 1 
Travel time of bus trips 0 1 0 
Bus ridership 0 1 0 
Pooled of any bus travel index 0 4 3 
Mode share of active travel 1 0 0 
Number of walking trips 0 0 1 
Number of cycling trips 0 0 1 
Travel time of walking trips 0 1 0 
Travel time of cycling trips 0 1 0 
Pooled of any active travel index 1 2 2 

Note: Public transit = rail and bus; active travel = walking and cycling; VMT = vehicle miles traveled; VKT = vehicle kilometers traveled; AADT =
vehicular traffic within road segments for both directions on any given day during a year. Travel behavior variables were pooled by travel mode. 
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with some studies reporting a positive association and others reporting no significant association. 

3.2. Research quality 

Of the eight studies in the meta-analysis, six were rated as moderate (Dai et al., 2020; Dai et al., 2022; Deng and Zhao, 2022; Spears 
et al., 2017; Wang et al., 2023; Xie, 2016), while the remaining two were rated as weak (Engebretsen et al., 2017; Ewing and Hamidi, 
2014) (Table 2). All the studies were rated as moderate in the dimensions of selection bias and study design, as they were observational 
studies with a non-random selection of participants. Some studies had issues in cofounders, as they did not control for relevant 
confounders (Deng and Zhao, 2022; Engebretsen et al., 2017; Ewing and Hamidi, 2014; Spears et al., 2017). One study was rated as 
strong in the dimension of data collection methods, as it used mobile phone data that provide objective measurements (Deng and Zhao, 
2022). In six repeated cross-sectional studies (Dai et al., 2020; Dai et al., 2022; Engebretsen et al., 2017; Ewing and Hamidi, 2014; 
Wang et al., 2023; Xie, 2016), the dimension of withdrawals and dropouts was rated as weak, as the dropout was high. 

3.3. Meta-Analysis 

The meta-analysis included eight studies that reported travel behavior outcomes comparable to those of other studies (Dai et al., 
2020; Dai et al., 2022; Deng and Zhao, 2022; Engebretsen et al., 2017; Ewing and Hamidi, 2014; Spears et al., 2017; Wang et al., 2023; 
Xie, 2016). Some studies provided multiple comparison pairs due to having multiple control groups (Dai et al., 2022; Deng and Zhao, 
2022) or follow-up periods (Spears et al., 2017; Xie, 2016). We identified 50 comparison pairs from the studies and converted the 
outcomes into seven categories: mode shares of rail, bus, car, and active travel, total number of trips and total trip distance, and VMT, 
which were then pooled. 

Fig. 2 and Table 3 present the overall effect of introducing new rail transportation on various travel behavior outcomes. The results 
indicate a significant positive relationship between rail transit and the mode share of rail (0.04, 95 % CI = 0.02, 0.05, P < 0.001), but 
there was an indication of heterogeneity (I2 = 83 %, P < 0.001). However, significant negative associations were found between rail 
transit and the mode shares of bus and car, as well as VMT, (for bus, − 0.05, 95 % CI = − 0.07, − 0.03, P < 0.001; for car, − 0.04, 95 % CI 
= − 0.06, − 0.01, P = 0.01; for VMT, − 0.20, 95 % CI = − 0.29, − 0.11, P < 0.001), with no heterogeneity for bus and VMT, but with 
heterogeneity for car (for bus, I2 = 54 %, P = 0.05; for car, I2 = 89 %, P < 0.001; for VMT, I2 = 0 %, P = 0.87). The pooled effects on the 
mode share of active travel (0.03, 95 % CI = − 0.03, 0.09, P = 0.37), the total number of trips (0.00, 95 % CI = − 0.01, 0.01, P = 0.72) 
and the total trip distance (− 0.05, 95 % CI = − 0.11, 0.02, P = 0.14) were insignificant. 

4. Discussion 

4.1. Major findings 

This study presents the first SR/MA based on natural experiment studies investigating the effects of newly introduced rail transit 
infrastructures on travel behavior. The pooled effect was estimated separately for various travel mode outcomes, revealing a pattern of 
modal shift in response to rail transit infrastructure. The introduction of new rail transit systems significantly increased the mode share 
of rail ridership while significantly decreasing the mode share of bus, car and vehicle miles traveled (VMT). However, it has no sig-
nificant effect on the mode share of active travel, the total number of trips and the total trip distance. The findings of the SR/MA 
suggest that the transition from bus and car might be the reason for the increase in rail ridership in response to the intervention. 

Promoting public transit use as a substitute for car use is a crucial expected outcome of urban rail investments. Prior studies have 
established that individuals residing close to rail stations tend to use their personal vehicles less frequently, perhaps due to the 
availability of a convenient transit option, particularly in areas characterized by high levels of traffic congestion (Ewing and Hamidi, 
2014; Huang et al., 2019). For individuals located in or around urban centers, using rail transit is generally more appealing than 
driving, thereby increasing their likelihood of switching to transit travel after its introduction (Paulley et al., 2006). Nevertheless, 
travel demand and personal preferences are likely to differ among residents. Discretionary riders who have greater flexibility in 
choosing their travel times may prefer the convenience and flexibility of driving (Jeihani et al., 2013). Similarly, higher-income males 

Table 2 
Quality rating of the studies in the meta-analysis.  

Study Selection 
bias 

Study 
design 

Cofounders Blinding Data collection 
methods 

Withdrawals and 
dropouts 

Overall 
rating 

Ewing and Hamidi 
(2014) 

Moderate Moderate Weak Moderate Moderate Weak Weak 

Xie (2016) Moderate Moderate Moderate Moderate Moderate Weak Moderate 
Spears et al. (2017) Moderate Moderate Weak Moderate Moderate Moderate Moderate 
Engebretsen et al. (2017) Moderate Moderate Weak Moderate Moderate Weak Weak 
Dai et al. (2020) Moderate Moderate Moderate Moderate Moderate Weak Moderate 
Deng and Zhao (2022) Moderate Moderate Weak Moderate Strong Strong Moderate 
Dai et al. (2022) Moderate Moderate Moderate Moderate Moderate Weak Moderate 
Wang et al. (2023) Moderate Moderate Moderate Moderate Moderate Weak Moderate  
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Table 3 
Meta-analysis results.  

Mode share of rail (0–1) 
Study Treatment Control Weight Intergroup difference 

[95 % CI] Before-after MD SD Total Before-after MD SD Total 

Dai et al. (2020)  0.146  0.339 561  0.041  0.317 561 7.8 % 0.10 [0.07, 0.14] 
Deng and Zhao (2022)  0.075  0.595 1801  0.019  0.578 1676 7.7 % 0.06 [0.02, 0.10] 
Deng and Zhao (2022)  0.075  0.595 1801  0.037  0.183 1682 10.2 % 0.04 [0.01, 0.07] 
Deng and Zhao (2022)  0.075  0.595 1801  0.046  0.289 2640 9.9 % 0.03 [− 0.00, 0.06] 
Spears et al. (2017)  0.033  0.070 138  0.005  0.068 92 13.3 % 0.03 [0.01, 0.05] 
Spears et al. (2017)  0.030  0.064 150  − 0.002  0.073 97 13.4 % 0.03 [0.01, 0.05] 
Wang et al. (2023)  0.271  0.418 524  0.176  0.388 524 5.9 % 0.10 [0.05, 0.14] 
Xie (2016)  0.004  0.147 3342  − 0.002  0.190 4205 16.0 % 0.01 [− 0.00, 0.01] 
Xie (2016)  0.020  0.166 3342  − 0.001  0.189 4205 15.9 % 0.02 [0.01, 0.03] 
Total [95 % CI]   13,460   15,682 100 % 0.04 [0.02, 0.05] 
Heterogeneity: I2 = 83 % (P < 0.001) 
Overall effect: P < 0.001  

Mode share of bus (0–1) 

Study Treatment Control Weight Intergroup difference 
[95 % CI] 

Before-after MD SD Total Before-after MD SD Total 

Dai et al. (2020)  − 0.027  0.437 561  0.021  0.429 561 10.7 % − 0.05 [− 0.10, 0.00] 
Spears et al. (2017)  − 0.017  0.192 150  0.028  0.193 97 11.2 % − 0.04 [− 0.09, 0.00] 
Spears et al. (2017)  − 0.030  0.181 137  0.006  0.164 92 12.5 % − 0.04 [− 0.08, 0.01] 
Wang et al. (2023)  − 0.061  0.456 524  0.071  0.448 524 9.6 % − 0.13 [− 0.19, − 0.08] 
Xie (2016)  − 0.056  0.389 3342  − 0.020  0.376 4205 28.1 % − 0.04 [− 0.05, − 0.02] 
Xie (2016)  − 0.031  0.390 3342  0.016  0.384 4205 27.9 % − 0.05 [− 0.06, − 0.03] 
Total [95 % CI]   8056   9684 100 % − 0.05 [− 0.07, − 0.03] 
Heterogeneity: I2 = 54 % (P = 0.05) 
Overall effect: P < 0.001  

Mode share of car (0–1) 

Study Treatment Control Weight Intergroup difference 
[95 % CI] 

Before-after MD SD Total Before-after MD SD Total 

Dai et al. (2020)  − 0.070  0.407 561  − 0.029  0.432 561 12.3 % − 0.04 [− 0.09, 0.01] 
Engebretsen et al. (2017)  − 0.051  0.006 7649  − 0.046  0.004 15,249 19.4 % − 0.00 [− 0.01, − 0.00] 
(Ewing and Hamidi, 2014)  − 0.141  0.608 348  − 0.020  0.652 465 6.8 % − 0.12 [− 0.21, − 0.03] 
Spears et al. (2017)  0.023  0.458 136  0.029  0.426 92 4.5 % − 0.01 [− 0.12, 0.11] 
Spears et al. (2017)  − 0.024  0.415 149  0.031  0.408 96 5.3 % − 0.06 [− 0.16, 0.05] 
Wang et al. (2023)  − 0.003  0.221 524  − 0.012  0.236 524 16.4 % 0.01 [− 0.02, 0.04] 
Xie (2016)  − 0.004  0.449 3342  0.043  0.440 4205 17.7 % − 0.05 [− 0.07, − 0.03] 
Xie (2016)  − 0.020  0.446 3342  0.048  0.442 4205 17.7 % − 0.07 [− 0.09, − 0.05] 
Total [95 % CI]   16,051   25,397 100 % − 0.04 [− 0.06, − 0.01] 
Heterogeneity: I2 = 89 % (P < 0.001) 
Overall effect: P = 0.01  

Mode share of active travel (0–1) 

Study Treatment Control Weight Intergroup difference 
[95 % CI] 

Before-after MD SD Total Before-after MD SD Total 

Engebretsen et al. (2017)  − 0.001  0.005 7649  0.030  0.003 15,249 17.7 % − 0.03 [− 0.03, − 0.03] 
(Ewing and Hamidi, 2014)  0.055  0.221 348  0.024  0.227 465 16.9 % 0.03 [0.00, 0.06] 
Spears et al. (2017)  0.000  0.221 137  0.015  0.205 91 15.3 % − 0.02 [− 0.07, 0.04] 
Spears et al. (2017)  0.013  0.212 149  0.009  0.213 97 15.4 % 0.00 [− 0.05, 0.06] 
Xie (2016)  0.056  0.458 3342  − 0.020  0.458 4205 17.3 % 0.08 [0.05, 0.10] 
Xie (2016)  0.031  0.449 3342  − 0.063  0.449 4205 17.3 % 0.09 [0.07, 0.11] 
Total [95 % CI]   14,967   24,312 100 % 0.03 [− 0.03, 0.09] 
Heterogeneity: I2 = 98 % (P < 0.001) 
Overall effect: P = 0.37  

Percentage change in total number of trips 

Study Treatment Control Weight Intergroup difference 
[95 % CI] 

Before-after MD SD Total Before-after MD SD Total 

Dai et al. (2020)  − 0.036  0.476 561  − 0.015  0.531 561 3.9 % − 0.02 [− 0.08, 0.04] 
Deng and Zhao (2022)  0.004  0.345 1801  − 0.007  0.331 1676 14.2 % 0.01 [− 0.01, 0.03] 
Deng and Zhao (2022)  0.004  0.345 1801  − 0.006  0.272 1682 15.3 % 0.01 [− 0.01, 0.03] 
Deng and Zhao (2022)  0.004  0.345 1801  − 0.002  0.331 2640 15.5 % 0.01 [− 0.01, 0.03] 
(Ewing and Hamidi, 2014)  0.135  0.752 348  0.165  0.815 465 1.3 % − 0.03 [− 0.14, 0.08] 

(continued on next page) 
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are more likely to rely on personal vehicles as their primary mode of transportation, regardless of the improvement in transit service 
(Pan et al., 2013). 

The shift from bus to rail can be explained by the fact that rail transit typically offers faster, more comfortable and convenient 
service compare to bus services, as noted in previous studies (Henry and Litman, 2006). Besides, the adjustment of bus service may be 
another reason for the shift from bus to rail in travel mode. After the implementation of rail transit, the bus transit agency may reduce 
the frequency or even eliminate certain bus lines that overlap with the rail transit routes, which could lead to a decrease in the overall 
supply of bus service. This reduction in bus service could further discourage the use of buses, leading to a decline in bus ridership. In 
cities with integrated public transport systems, rail transit often serve as a backbone of public transport service, with buses providing a 
complementary service due to their different capacities and inherent characteristics (Verma and Dhingra, 2006). For example, in Hong 
Kong, rail and bus account for 30 % and 27 %, respectively, of the daily trips made by urban residents during weekdays (Transport 
Department of Hong Kong, 2011). 

The findings also indicate that the effect of rail transit interventions on active travel was insignificant. The introduction of urban 
rail transit systems may lead to an increase in active travel as households residing near rail stations may find it more convenient to use 
nearby facilities by walking or cycling (Zhao and Li, 2018). However, the time taken to travel to previous active travel destinations may 
decrease due to the introduction of rail transit, resulting in some active travelers shifting to using rail as their primary mode of 
transportation (Hong et al., 2016). Additionally, poor connectivity of sidewalks or cycling lanes, lack of tree shade, and concerns over 
traffic safety may discourage active travel (Sun et al., 2020). Hence, residents may choose to give up walking or cycling when other 
travel options are available. It should be noted that walking and cycling trips to and from rail stations may be excluded in some travel 
surveys, as they only captured the predominant mode of transportation within a trip chain. Therefore, the effect of rail transit in-
terventions on active travel behavior may be underestimated. 

Furthermore, it is worth mentioning that the lack of significant effects on the total trips may be explained by the fact that rail transit 
systems are typically implemented in areas with high demand for travel, and therefore the new rail services may just substitute or 

Table 3 (continued ) 

Percentage change in total number of trips 

Study Treatment Control Weight Intergroup difference 
[95 % CI] 

Before-after MD SD Total Before-after MD SD Total 

Spears et al. (2017)  0.088  0.877 149  − 0.155  0.763 96 0.4 % 0.24 [0.04, 0.45] 
Spears et al. (2017)  0.043  0.889 135  − 0.063  0.774 91 0.3 % 0.11 [− 0.11, 0.32] 
Wang et al. (2023)  − 0.212  0.384 524  − 0.263  0.406 524 5.5 % 0.05 [0.00, 0.10] 
Xie (2016)  − 0.006  0.245 3342  0.009  0.25 4205 21.5 % − 0.01 [− 0.03, − 0.00] 
Xie (2016)  − 0.025  0.236 3342  − 0.019  0.209 4205 22.2 % − 0.01 [− 0.02, 0.00] 
Total [95 % CI]   13,804   16,145 100 % 0.00 [− 0.01, 0.01] 
Heterogeneity: I2 = 56 % (P = 0.02) 
Overall effect: P = 0.72  

Percentage change in total trip distance 

Study Treatment Control Weight Intergroup difference 
[95 % CI] 

Before-after MD SD Total Before-after MD SD Total 

Deng and Zhao (2022)  0.151  0.466 1801  0.141  0.631 2640 17.8 % 0.01 [− 0.02, 0.04] 
Deng and Zhao (2022)  0.151  0.466 1801  0.142  0.569 1682 17.7 % 0.01 [− 0.03, 0.04] 
Deng and Zhao (2022)  0.151  0.466 1801  0.117  0.449 1676 17.9 % 0.03 [0.00, 0.06] 
Wang et al. (2023)  0.101  0.791 524  0.18  0.800 524 13.0 % − 0.08 [− 0.18, 0.02] 
Xie (2016)  − 0.100  0.995 3342  0.075  1.156 4205 16.8 % − 0.17 [− 0.22, − 0.13] 
Xie (2016)  − 0.095  1.006 3342  0.0040  1.148 4205 16.8 % − 0.10 [− 0.15, − 0.05] 
Total [95 % CI]   12,611   14,932 100 % − 0.05 [− 0.11, 0.02] 
Heterogeneity: I2 = 93 % (P < 0.001) 
Overall effect: P = 0.14  

Percentage change in VMT 

Study Treatment Control Weight Intergroup difference 
[95 % CI] 

Before-after MD SD Total Before-after MD SD Total 

Dai et al. (2022)  − 0.397  2.771 801  − 0.233  2.938 1684 15.3 % − 0.16 [− 0.40, 0.07] 
Dai et al. (2022)  − 0.397  2.771 801  − 0.256  2.875 2972 18.2 % − 0.14 [− 0.36, 0.08] 
Ewing and Hamidi (2014)  0.069  1.014 348  0.324  1.07 465 41.5 % − 0.26 [− 0.40, − 0.11] 
Spears et al. (2017)  − 0.078  1.032 146  0.051  0.907 93 13.9 % − 0.13 [− 0.38, 0.12] 
Spears et al. (2017)  − 0.04  1.125 134  0.184  0.989 89 11.0 % − 0.22 [− 0.50, 0.06] 
Total [95 % CI]   2230   5303 100 % − 0.20 [− 0.29, − 0.11] 
Heterogeneity: I2 = 0 % (P = 0.87) 
Overall effect: P < 0.001 

Note: In order to make a standardized comparison across the studies, we calculated the effects in terms of percentage change for the total number of 
trips, the total trip distance and VMT variables. 
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Table A1 
Characteristics of included studies for systematic review.  

Author, year Study 
location 

Intervention type Study 
design 

Data 
source 

Follow- 
up 
duration 
(year) 

Data 
analysis 
unit 

Sample size (N) Treatment 
group 

Control 
group 

Travel behavior 
metric 
(associations 
with rail transit) 

Statistical 
method 

Time 
1 

Time 2 

Senior (2009) Greater 
Manchester, 
UK 

Light 
rail 

Longitudinal 
(prospective) 

Survey 2.5 Individual 1002 614 Rail corridor Heavy rail and 
non-rail 
corridors 

Frequency of bus 
use (-) Frequency 
of rail use (+) 

Chi-square test 

(Ewing and 
Hamidi, 
2014) 

Portland, US Light 
rail 

Repeated cross- 
sectional 

Survey 17 Household 634 991 Rail corridor Highway 
corridor 

VMT (-) Linear 
regression 
model 

Xie (2016) Beijing, China Heavy 
rail 

Repeated cross- 
sectional 

Survey 1 and 2 Individual 7547 7547 TAZs with 
smaller 
distance to 
stations 

TAZs with 
unchanged 
distance to 
stations 

Mode share of rail 
(+) 
Mode share of bus 
(0) 
Mode share of car 
(-) 
Mode share of 
active travel (+) 
Total number of 
trips (0)Total trip 
distance (0) 

Difference-in- 
differences 
(DiD) model 

Spears et al. 
(2017) 

Los Angeles, 
US 

Light 
rail 

Longitudinal 
(prospective) 

Survey 0.5 and 
1.5 

Household 285 173 Within 1000 m 
of the stations 

Between 
1000 m and 
5000 m of the 
stations 

VMT (-) 
Number of rail 
trips (+) 
Number of bus 
trips (0) 
Number of car 
trips (0) 
Number of 
walking trips (0) 
Number of 
cycling trips (0) 
Total number of 
trips (0) 

DiD 

Engebretsen 
et al. 
(2017) 

Bergen, 
Norway 

Light 
rail 

Repeated cross- 
sectional 

Survey 5 Individual 21,859 23,960 Within 1000 m 
of the stations 

1000 m away 
from the 
stations 

Mode share of 
public transit (+) 

Logistic 
regression 
model 

Cao and 
Ermagun 
(2016) 

Minneapolis, 
US 

Light 
rail 

Longitudinal 
(retrospective) 

Survey – Individual 597 Movers into 
rail corridors 

Movers into 
non-rail urban 
and suburban 
corridors 

Frequency of car 
use (-) Frequency 
of rail use (+) 

Structural 
equations model 
(SEM) 

Werner et al. 
(2016) 

Salt Lake City, 
US 

Light 
rail 

Repeated cross- 
sectional 

Passenger 
counts 

1 Catchment 
area 

– – Within 0.25 
miles of the 
stations 

0.25 miles 
away from the 
stations 

Public transit 
ridership (+) 

Fixed effects 
repeated 
measures 
regression 
model 

Huang et al. 
(2019) 

Xi’an, China Heavy 
rail 

Longitudinal 
(retrospective) 

Survey – Individual 593 Movers into 
rail corridors 

Movers into 
control 
corridors 

VKT (-) Ordered 
response model 

(continued on next page) 
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Table A1 (continued ) 

Author, year Study 
location 

Intervention type Study 
design 

Data 
source 

Follow- 
up 
duration 
(year) 

Data 
analysis 
unit 

Sample size (N) Treatment 
group 

Control 
group 

Travel behavior 
metric 
(associations 
with rail transit) 

Statistical 
method 

Time 
1 

Time 2 

Dai et al. 
(2020) 

Singapore Heavy 
rail 

Repeated cross- 
sectional 

survey 4 Individual 1122 1122 Within 500 m 
of the stations 

Between 500 
m and 1000 m 
of the stations 

Mode share of rail 
(+) 
Mode share of bus 
(0) 
Mode share of car 
(-) Total number 
of trips (0) 

Two- 
dimensional 
propensity score 
matching 
(2DPSM) and 
DiD 

Liu and Li 
(2020) 

43 cities, 
China 

Heavy 
rail 

Repeated cross- 
sectional 

Official 
transport 
data 

21 City – – Cities with 
subways 

Cities without 
subways (with 
subway plan) 

Bus ridership (-) DiD 

Sun et al. 
(2020) 

Nanchang, 
China 

Heavy 
rail 

Longitudinal 
(prospective) 

Survey 1 Individual 5436 1770 Within 800 m 
of the stations 

1600 m and 
5000 m away 
from the 
stations 

Travel time of rail 
trips (+) 
Travel time of bus 
trips (-) 
Travel time of car 
trips (0) 
Travel time of 
walking trips (-) 
Travel time of 
cycling trips (-) 

DiD 

Ibraeva et al. 
(2021) 

Porto, 
Portugal 

Heavy 
rail 

Repeated cross- 
sectional 

Official 
transport 
data 

10 Parish – – Metro-served 
parishes 

Non-metro- 
served 
parishes 

Number of car 
trips (-) 

DiD and Spatial 
DID (SDID) 
model 

Tao et al. 
(2021) 

Twin Cities, 
US 

Light 
rail 

Repeated cross- 
sectional 

Official 
transport 
data 

9 Road 
segment 

– – One-mile 
buffer along 
the rail line 

One-mile 
buffers along 
the highways 

AADT (-) DiD 

Deng and 
Zhao 
(2022) 

Shenzhen, 
China 

Heavy 
rail 

Longitudinal 
(prospective) 

Mobile 
phone data 

1 and 1.3 Individual 7799 7799 Between 0 and 
1 km, 1–2 km 
and 2–3 km of 
the stations 

3 km away 
from the 
stations 

Total frequency 
of trips (+) 
Frequency of rail 
trips (+) 
Total trip distance 
(+) 
Distance of rail 
trips (+) 
Total travel time 
of trips (0)Travel 
time of rail trips 
(+) 

DiD 

Dai et al. 
(2022) 

Singapore Heavy 
rail 

Repeated 
cross- 
sectional 

survey 4 Individual 1444 1444 Within 
500 m of 
the 
stations 

Between 500 
and 1000 m 
and 500–1500 
m of the 
stations 

VKT (-) 2DPSM and DiD  

Wang et al. 
(2023) 

Hong Kong, 
China 

Heavy 
rail 

Repeated 
cross- 
sectional 

Survey 9 Individual 1048 1048 Within 
500 m of 
the 
stations 

Between 500 
and 1500 m of 
the stations 

Mode share of 
rail (+) 
Mode share of 
bus (-) 

2DPSM and 
paired t-test  

(continued on next page) 
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Table A1 (continued ) 

Author, year Study 
location 

Intervention type Study 
design 

Data 
source 

Follow- 
up 
duration 
(year) 

Data 
analysis 
unit 

Sample size (N) Treatment 
group 

Control 
group 

Travel behavior 
metric 
(associations 
with rail transit) 

Statistical 
method 

Time 
1 

Time 2 

Mode share of 
car (0) 
Total number 
of trips (+) 
Total trip 
distance (0) 

Note: Public transit = rail and bus; active travel = walking and cycling; TAZ = traffic analysis zone; VMT = vehicle miles traveled; VKT = vehicle kilometers traveled; AADT = vehicular traffic within road 
segments for both directions on any given day during a year. “+” = statistically significant positive association; “-” = statistically significant negative association; “0” = no significant association. 
. 
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redistributed the existing travel demand (Ettema and Nieuwenhuis, 2017). Moreover, the effectiveness of rail transit in inducing travel 
demand may also depend on the existing transportation infrastructure, land use, and socioeconomic factors in the study area (Chat-
man, 2013). Therefore, the lack of significant effects on total trips should not be interpreted as a failure of rail transit interventions in 
promoting sustainable urban mobility, but rather as a need for more comprehensive and context-specific planning strategies to achieve 
the desired outcomes of transit-oriented development (TOD). 

Although the intervention effects on the travel modes were pooled and quantified in our meta-analysis, the results should be treated 
with caution as there was some evidence of heterogeneity. When interpreting the heterogeneity, it is important to consider both the 
contexts of rail interventions on the results. The contexts of rail infrastructural interventions remain an important consideration when 
examining how the effect of an intervention varies in different settings (Campbell et al., 2007). Urban rail infrastructure is designed to 
suit cities’ specific social and economic characteristics and their population’s travel demand, which may all moderate its effects (Moore 
et al., 2014). Furthermore, the effectiveness of the interventions may differ with the built environment around rail stations and the 
connectivity to existing public transport systems, public facilities and parks of the city (Chatman, 2013; Xiao et al., 2019). Another 
factor that may explain the variance in the analyzed studies is the diversity of their methodologies, such as the types of travel behavior 
measured, measurement tools, length of follow-up duration, definition of treatment and control groups and the statistical analysis 
method. 

4.2. Data sources 

Existing research in the field of travel behavior analysis primarily relies on survey data, which includes both repeated cross- 
sectional data and panel data. Repeated cross-sectional datasets captured different cohorts of participants in different waves of sur-
vey and thus can only provide insight into the aggregate population-level implications of changes in travel behavior (Zhong et al., 
2021). However, different cohorts of participants could lead to inaccurate estimates, as any changes in travel patterns observed could 
be due to changes in demographic factors over time (Cao and Cao, 2014). Nevertheless, repeated cross-sectional data are particularly 
useful for before-and-after studies of travel behavior because of their widespread availability and ease of access. In addition, the issue 
of demographic change over time in cross-sectional data can be partially mitigated by using statistical techniques such as PSM (Dai 
et al., 2020; Dai et al., 2022). 

Panel data is gathered for a particular group or population at two different points in time – before and after the implementation of 
rail transit infrastructure, which can detect changes in the outcomes of the same participants and thus provide more robust evidence 
for inferring a causal effect (Spears et al., 2017). However, panel datasets tend to have relatively small sample sizes because tracking 
participants for years is a time-consuming and costly endeavor (Zhong et al., 2021). Due to the limited sample size and potential 
dropouts of participants during the tracking process, as well as self-reported bias, the results may remain biased. 

Moreover, individual travel behavior is highly complex, with both predictable and unpredictable patterns occurring on a daily, 
weekly, and monthly basis (Järv et al., 2014). Conventional survey data can only capture a brief moment in time of an individual’s 
travel habits, typically no longer than a single day or a few days. To address these limitations, researchers have started using big data, 
such as mobile phone data, to measure individuals’ travel behavior (Deng and Zhao, 2022). Mobile phone data is gathered auto-
matically and continuously, which permits larger population samples and the ability to record continuous travel information over an 
extended duration of time. However, mobile phone data cannot accurately provide sociodemographic attributes or identify trans-
formation between different travel modes, such as transfer between bus and rail, compared to traditional survey data. 

4.3. Statistical methods 

In terms of statistical methods, DiD method is the most well-established and widely used in natural experiment studies. The DiD 
method measures the difference in outcome changes between those who have been exposed to an intervention (such as the imple-
mentation of a new infrastructure or policy) and those who have remained unexposed (Craig et al., 2017). The method relies on the 
assumption that, without the intervention, changes in outcomes would have occurred equally in both groups (Dimick and Ryan, 2014). 
Therefore, any differences between these two groups can be traced to the intervention’s effect. Compared to traditional regression 
models, the DiD approach has the advantage of controlling for both unobserved and observed differences in the groups’ fixed char-
acteristics, making it less susceptible to bias from unmeasured confounders or measurement errors (Craig et al., 2017). Recent de-
velopments, such as the PSM method, used to match exposed and unexposed groups, can help control for unmeasured confounders and 
allow balanced comparisons (Austin, 2008). Therefore, the combination use of DiD and PSM may further strengthen causal inference. 

In addition to DiD, the Interrupted Time Series (ITS) design with a control group, also known as controlled ITS, is another valid 
option for evaluating the impact of rail interventions (Lopez et al., 2019). While the DiD design measures the outcome at a single 
baseline time point and a single follow-up time point, it can be difficult to confirm the underlying assumption that the pre-intervention 
trends are parallel in both the control and intervention groups. This can lead to bias due to the unparallel trends in the two groups. The 
ITS design, on the other hand, measures outcomes at multiple baseline and follow-up time points and allows for extrapolation of pre- 
intervention trends in the two groups. This allows for the bias of DiD to be addressed by verifying whether the trends are parallel in the 
two groups (Lopez et al., 2019). Furthermore, ITS design allows for the identification of the post-intervention trend for the intervention 
group in detail, such as a time delay between the intervention and its subsequent impact, and the direction of effect trends over time, 
whether downward, flat, or upwards trends. Therefore, a controlled ITS design, which combines the strengths of both ITS and DiD, can 
further enhance the ability to infer causality (Craig et al., 2017; Lopez et al., 2019). 
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4.4. Limitations 

A major limitation of our study is the small sample size in the meta-analysis. Despite our efforts to obtain original, unreported data 
from the authors of all publications included in this meta-analysis, the number of articles that met our inclusion criteria was limited. A 
small sample size may lead to low statistical power (Gurevitch et al., 2018). Second, there was significant heterogeneity for some travel 
behavior evidence, which suggested that their pooled effect sizes may not represent the common population (Ng et al., 2006). 
Although we discussed potential sources of heterogeneity, such as the difference in the study context, the definition of the catchment 
area, and the length of the follow-up period, we were unable to perform subgroup analyses to identify the sources of heterogeneity due 
to the limited eligible studies. Third, there remains the risk of publication bias, where studies with null or negative results are less likely 
to be published. This can lead to an overrepresentation of studies with positive results in the meta-analysis, potentially leading to an 
overestimation of the true effect size of the intervention (Thornton and Lee, 2000). 

Despite such limitations, this study is timely and meaningful for several reasons. First, the natural experiments included in this 
review represent a diverse range of geographic locations, study populations, and study designs. This diversity increases the gener-
alizability of our findings and suggests that our results may be applicable to a broad range of settings. Second, we conducted a rigorous 
assessment of study quality and excluded studies that did not meet our inclusion criteria, which helps to ensure that the studies 
included in our analysis were of sufficient quality. Such high standard ensures rigorous findings of the relationship between urban rail 
transit and travel behavior. Third, our analysis provides a comprehensive synthesis of the existing literature in this field, which may be 
particularly useful for policymakers who need to make informed decisions with high-quality and reliable evidence on a particular topic 
(Valentine et al., 2010). Finally, we believe that our study provides a valuable guide for future natural experimental study on the effect 
of rail transit on travel behavior. 

4.5. Recommendations for future studies 

The context of rail infrastructural interventions is crucial in determining the treatment effect o urban rail transit systems on travel 
behavior. However, most studies did not account for the complex context of each rail project studied, such as TOD implementation, the 
site and route selection of rail transit, and other municipal land use policies. This limitation impedes our understanding of the impacts 
of rail transit investments and municipal land use policies. To overcome this limitation, future studies should provide a detailed 
description of local contexts, which will allow their findings to be generalized to other locations. Additionally, it is important to 
distinguish the impacts of the built environment of station areas from the effects of rail transit itself. In other words, if there is an 
impact, planners should identify whether it can be attributed to transportation investments, land use policies, or both. 

We offer several recommendations for improving research methods. First, we suggest that longer follow-up durations should be 
used, particularly for prospective longitudinal studies, where follow-up periods of 1 to 2.5 years may be insufficient for new travel 
habits to form. By tracking cohorts over a longer period (e.g., 5 years or more), we can obtain time series data for Controlled ITS 
analysis, which allows for stronger causal inference than simple pre-post DiD design and facilitates the detection of long-term travel 
behavioral changes. 

Second, most studies relied on self-reported data from travel surveys, which are subject to potential recall bias and social desir-
ability biases. Combining subjective (e.g., travel survey) and objective (e.g., mobile phone signaling data, wearable devices) mea-
surement methods can accurately track changes in individuals’ travel behavior (Song et al., 2020). 

Third, some studies did not define control groups clearly, which made it difficult to isolate the treatment effect from temporal 
confounding factors. To address this issue, we suggest that future studies should define the treatment and control groups appropriately, 
matching built environment attributes (e.g., housing types, land use mixture, and density of public facilities) and demographic profiles 
closely. Moreover, almost all studies used only a single distance threshold to define treatment and control groups, making it difficult to 
identify the dose–response effect of rail transit interventions (Xie et al., 2021). To better understand the dose–effect, future studies 
should use multiple distance thresholds (e.g., 500, 1000, 1500 and 2000 m) to examine the effects of rail transit interventions. 

5. Conclusions 

Our study represents the first SR/MA based on natural experiment evidence to examine the effects of rail transit infrastructures on 
travel behavior. Using a random-effects meta-analysis model, we estimated the effects of rail transit on various travel modes and 
identified a pattern of modal shift. Our results indicate that rail ridership increased following rail transportation interventions, while 
the mode shares of bus and car declined. Further studies should make an effort to provide detailed descriptions of the local context, use 
longer follow-up durations, measure outcomes objectively, and define treatment and control groups appropriately. 
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