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A B S T R A C T   

As an emerging and freely available urban big data, Street View Imagery (SVI) has proven to be a useful resource 
to examine various urban phenomena in human behavior, the built environment and their interactions. However, 
due to technical limitations, previous studies often focused on general pedestrians and ignored certain population 
subgroups such as older adults. In this study, we develop an innovative method for detecting older pedestrians 
using SVI. We adopted transfer learning to train a model which can accurately detect older pedestrians on SVI 
with an accuracy of 87.1%. 

Using Hong Kong as a case study, we created a dataset consisting of 72,689 street view panoramas and 
detected 7763 older pedestrians and 29,231 non-older pedestrians. We further visualized the distribution of 
detected older pedestrians and found a significant spatial discrepancy between older pedestrians and residential 
population of older adults. To account for this spatial discrepancy, this study proposed a novel index to assess 
pedestrian demand and walking environment based on the ratio of the number of pedestrians and the residential 
population. We also found pedestrian demand assessed with this index has a stronger correlation with the built 
environment compared with population-level travel survey. This novel approach can be used to assess pedestrian 
demand for older adults, as well as aging-friendly walking environment.   

1. Introduction 

With rapidly aging populations in many countries, more and more 
governments and researchers have recognized the importance of 
building age-friendly cities. Researchers have found that regular phys-
ical activities can significantly increase older adults’ life expectancy (Lee 
et al., 2012) and reduce the risk of having chronic diseases such as 
cardiovascular disease (Smith, Wingard, Smith, Kritz-Silverstein, & 
Barrett-Connor, 2007), coronary heart disease (Manson et al., 1999), 
type 2 diabetes (Aune, Sen, Henriksen, Saugstad, & Tonstad, 2016), 
breast cancer (Wu, Zhang, & Kang, 2013), and colon cancer (Boyle, 
Keegel, Bull, Heyworth, & Fritschi, 2012). As the most common form of 
physical activity among older adults, walking has therefore attracted 
considerable attention (Chodzko-Zajko et al., 2009; Pahor et al., 2014). 
Due to their declined physical abilities and mobility associated with 
aging, older adults are more sensitive to the surrounding built 

environment than young adults (Chen, Lu, Ye, Xiao, & Yang, 2022; Feng, 
2017; Ghani, Rachele, Loh, Washington, & Turrell, 2018), so it is 
important to investigate walking environment for older adults. 

Researchers often employed walkability to assess the walking envi-
ronment, which is defined as the synergy of certain built environmental 
factors, including density, diversity, and design, which can promote and 
support walking (Forsyth, 2015). For example, the World Health Orga-
nization (WHO) has summarized 88 essential indicators for evaluating 
aging-friendly cities, of which 12 features relate to the built- 
environment factors for pedestrians (Organization, W. H, 2007). Some 
researchers used the Walk Score, a rating system calculated based on the 
distance to the nearest amenities such as hospitals and schools, to 
measure walkability (Carr, Dunsiger, & Marcus, 2010). However, these 
measurements focus only on the availability of walkable infrastructure 
and walking opportunities, and may not reflect actual pedestrian de-
mand on streets (Chen et al., 2020; Dhanani, Tarkhanyan, & Vaughan, 
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2017) An area with high walkability may not necessarily have higher 
pedestrian activity, and similarly, an area with low walkability may still 
have many pedestrians. 

Indeed, the association between built environment factors and 
walking behavior tends to be intertwined and dependent on the social 
and urban context. For example, higher urban density often promotes 
walking behavior in low or medium-density cities. However, such as-
sociation tends to be insignificant in high-density cities such as Hong 
Kong (Cerin et al., 2013; Kamada et al., 2011). Additionally, empirical 
studies have found that the walking behaviors of disadvantaged pop-
ulations tend to be less responsive to built-environment factors, and 
even demonstrate opposite responses to the expected effects of these 
factors (Adkins, Makarewicz, Scanze, Ingram, & Luhr, 2017; Forsyth, 
Oakes, Lee, & Schmitz, 2009; Frank, Kerr, Sallis, Miles, & Chapman, 
2008; Huang, Li, Yu, Yang, & Wang, 2022; Lovasi, Quinn, Neckerman, 
Perzanowski, & Rundle, 2008). Therefore, it is also important to obtain 
pedestrian demand on streets (Chen et al., 2020). This approach may 
arguably be more accurate and straightforward to assess pedestrian 
activity than walkability-based methods. 

There are two common approaches to collect fine-grained pedestrian 
demand data. The first is field observation (Brownson, Hoehner, Day, 
Forsyth, & Sallis, 2009). But it is costly, time-consuming and inefficient. 
The second approach is to infer pedestrian activity from population- 
level travel surveys (Schwartz, 2000). However, such inferring may be 
inaccurate because people tend to underreport short walking trips or 
short walking legs of a trip (Chen et al., 2022). In recent years, re-
searchers have begun using Street View Imagery (SVI) and computer 
vision techniques to estimate pedestrian volume in a large area such as a 
whole city, because of its efficiency and cost-effectiveness. However, 
due to technical limitations, most existing research only uses SVIs to 
detect pedestrians, but not to classify pedestrians by age (Chen et al., 
2020; Yin, Cheng, Wang, & Shao, 2015). 

Therefore, the main purpose of this study is to develop a novel 
method to detect older pedestrians using SVI and a non-facial human 
attributes recognition algorithm. We also analyze the spatial distribu-
tion of older pedestrians in a whole city. This study contributes to 
existing knowledge in four aspects. First, we established a large SVI- 
based dataset with labels for older pedestrians. Second, we developed 
a novel method for detecting older pedestrians using SVI and a non- 
facial human attributes recognition approach. Third, we examined the 
spatial distribution of older pedestrians in an entire city. Fourth, we used 
the ratio of the detected pedestrians and the number of residents to 
evaluate walking environment. 

2. Related works 

2.1. Measurement walking behaviors of older adults 

Although numerous studies focus on walking behavior and other 
physical activities of older adults, most of them have concentrated on 
North America and Europe where older people have different lifestyles 
and walking habits compared to East Asia. For example, North American 
and European studies (Bennie et al., 2013; de Rezende et al., 2014; 
Harvey, Chastin, & Skelton, 2015) found that older adults spent less time 
on walking compared with younger people, while Asian (Hong Kong and 
Japan) studies found the opposite outcomes (Hui, Chan, Wong, Ha, & 
Hong, 2001; Tsunoda et al., 2012). The methods to measure walking 
behaviors also differ across studies. Most studies focus on the individual 
walking behavior (IWB) of older people, such as daily walking time, 
walking frequency, and walking distance (Mendes de Leon et al., 2009; 
Moniruzzaman, Páez, Scott, & Morency, 2015; Shigematsu et al., 2009; 
Van Holle et al., 2016). Some studies focus on collective walking 
behavior (CWB) such as urban vitality and pedestrian volume (Chen 
et al., 2020; Lee, Sung, & Woo, 2017; Sung, Lee, & Cheon, 2015). 
Traditionally, IWB can be obtained by questionnaire (Barnett, Barnett, 
Nathan, Van Cauwenberg, & Cerin, 2017) while CWB can be assessed by 

field observation (Yin, 2017). However, these approaches are costly, 
time-consuming, and unsuitable for large-scale studies. Recently, re-
searchers employed urban big data such as smart card data (Long & 
Thill, 2015) and mobile signal data (Du, Yue, Ji, & Sun, 2017) to assess 
both IWB and CWB. However, such data still cannot differentiate street- 
level pedestrian behaviors, because such data sources tend to have low 
spatial resolution (e.g., 10 m or 100 m). 

2.2. SVI as a novel data to measure urban environment and walking 
activity 

The recent proliferation of Street View imagery (SVI), rapid advances 
in computer vision technology and soaring computing power have 
created great opportunities for measuring street-level built-environment 
and human activities. Some researchers focused on auditing features of 
the urban environment such as buildings (Ogawa & Aizawa, 2019), 
street greenery (Liu, Jiang, Wang, & Lu, 2023; Lu, 2019), and sidewalks 
(Ning, Ye, Chen, Liu, & Cao, 2022), while the others used SVIs to predict 
people’s subjective perception of the urban environment such as safety 
(Wang et al., 2019) and aesthetics (Luo, Xie, & Furuya, 2022). 

On the other research front, some researchers have begun to use SVIs 
to directly quantify pedestrian volumes. For example, some researchers 
have started to pay attention to the potential of SVIs to assess pedestrian 
volume. Yin et al. (2015) developed an approach to automatically 
extracting pedestrian counts on Google SVIs using deep learning tech-
nology. They validated the reliability of the proposed method across 200 
street segments in Buffalo, NY, Washington, D.C., and Boston, MA, USA, 
and found it can produce consistent results with both manual count with 
Google SVIs and field count. Chen et al. (2020) has further validated the 
robustness of using SVIs to estimate pedestrian volume over 700 street 
segments in Tianjin, China, by comparing with field observation data 
(Chen, Wang, Bao, & Lou, 2022). 

2.3. Non-facial human attributes recognition (NHAR) and crowd analysis 

Non-facial human attributes recognition (NHAR) which aims to 
recognize, describe, and understand human attributes from images 
without facial information, has attracted much attention in computer 
vision field in recent years (Wang et al., 2022). The face is the most 
distinctive part of humans and provides an invaluable data source for 
computer vision algorithms (Thom & Hand, 2020). However, human 
faces in SVIs are intentionally blurred to protect privacy (Deng, Luo, 
Loy, & Tang, 2014). Therefore, it is necessary to detect human attributes 
from non-facial human parts, such as whole body (Hidayati, You, Cheng, 
& Hua, 2017) or clothing (Xiang, Dong, Pan, & Gao, 2020). Pedestrian 
attributes recognition (PAR) (Wang et al., 2022) is one such emerging 
technique with promising results. It mainly relies on data derived from 
people’s posture and gestures. Existing studies have shown that PAR 
along with transfer learning (Weiss, Khoshgoftaar, & Wang, 2016) and 
data augmentation (Shorten & Khoshgoftaar, 2019) can efficiently 
recognize many different human attributes from images. 

Because some pedestrians walk in groups, detecting individuals from 
a large group of pedestrians presents additional technical challenges. A 
new technique known as crowd analysis, may address this issue (Wu, 
Moore, & Shah, 2010). Crowd analysis is usually applied in crowd 
behavior analysis (Saxena, Brémond, Thonnat, & Ma, 2008), people 
counting (Liang, Zhu, & Wang, 2014), anomaly detection (Husni & 
Suryana, 2010) and people tracking (Rodriguez, Laptev, Sivic, & Audi-
bert, 2011). Recently, it has been used for pedestrian detection and 
pedestrian volume estimation based on SVIs (Chen et al., 2020; Yin 
et al., 2015). 
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3. Methodology 

3.1. Study area 

As one of the densest and most urbanized cities in the world, Hong 
Kong houses >7 million residents in a land of only 1100 km2. Hong Kong 
also witnesses an increasingly aging population, presenting various 
challenges for the region. The number of older adults aged 65 and over is 
expected to increase from 1.45 million (19.1% of the total population) in 
2021 to about 2.37 million (31.1%) in 2036 (Census and Statistics 
Department, 2020). According to the government, Hong Kong will 
become one of the cites with the highest percentage of older residents in 
the world by 2050 (Census and Statistics Department, 2020). In this 
study, we selected the whole Hong Kong region as our study area and 
focus on all streets covered by Google Street View (Fig. 1). 

The entire territory of Hong Kong consists of three parts: Hong Kong 
Island, Kowloon and the New Territories. The dense urban region in 
Hong Kong is centralized on Hong Kong Island and Kowloon, which 
collectively cover a mere 13.8% of the total area, yet house 50% of the 
population. Conversely, the New Territories predominantly comprise 
country parks and rural areas, but with over 3 million population 
concentrated in new towns. On Google Maps, there are 70,021 SVI 
sample points for the entire Hong Kong area, covering 31,971 street 
segments and 199 Tertiary Planning Units (TPUs). Among them, 11,467 
SVI sample points were detected to have pedestrians. 

3.2. The overall study design 

Fig. 2 shows the overall workflow of older pedestrian detection and 
data analysis. First, we detected and cropped pedestrians from SVIs for 
the entire Hong Kong area using the pre-trained You Only Look Once 
(YOLO) v5x6 model (Redmon & Farhadi, 2017). Then, we classified 
these pedestrians into two groups (non-elderly vs. older adults) using 
Resnet50. Resnet50 was pre-trained with the modified dataset RAP and 
PA -100 K and fine-tuned labeled SVIs. In this way, we obtain the 
pedestrian volume with age information for each street in Hong Kong 
covered by SVIs. 

3.3. Dataset for model training 

3.3.1. Pretraining dataset 
To improve the accuracy of the model, we used the Richly Annotated 

Pedestrian dataset (RAP) (Li, Zhang, Chen, & Huang, 2018) and the PA 
-100 K (Liu et al., 2017) dataset for pretraining. RAP (Richly Annotated 
Pedestrian) and PA-100 K are datasets specifically curated for human 
attribute recognition, and person re-identification tasks in computer 
vision research. These datasets are generally designed for academic 
research and are meant to facilitate training and benchmarking deep 
learning. 

RAP dataset contains 41,585 pedestrian images captured by sur-
veillance cameras in various public places like streets, parks, and 
shopping malls. The images come from the CASIA Office of Turing Ro-
botic Intelligence and the Harbin Institute of Technology in China. The 
dataset is richly annotated with various pedestrian attributes such as 
age, gender, clothing, accessories, and occlusions. 

PA-100 K dataset consists of 100,000 pedestrian images, making it 
one of the largest and most comprehensive pedestrian attribute recog-
nition datasets. The images were collected from multiple sources, 
including surveillance cameras from many countries worldwide. 
Although specific countries are not explicitly mentioned, it is safe to 
assume that the dataset maintains diversity in terms of ethnicity, 
clothing, and backgrounds. It is annotated with 26 attributes like 
gender, age, clothing type, hairstyle, and accessories. 

We combined these two datasets into one. Each image contains a 
person tagged with multiple tags, including age and gender. Age in RAP 
and PA -100 K was divided into five classes, including <16, 16–30, 
31–45, 46–60, and over 60 years old. In this study, we focused on pe-
destrians who are over 60 years old, so we combined the other four 
classes into one class: 60 years old or less. The final combined dataset 
contains 1654 images with older adults and 1654 images with others. To 
avoid imbalance between the number of images with older adults and 
people in other age groups, we selected all 1654 images with older 
adults and randomly selected 1654 images with people in other age 
groups from the combined dataset. We then performed data augmen-
tation on these two newly selected datasets (NSD). 

Since each pedestrian in SVIs is face masked, we masked the same 
areas of the images in RAP and PA -100 K to reduce the difference be-
tween the training dataset and the target dataset (Fig. 3). 

3.3.2. SVIs dataset for fine-tuning 
Pedestrians in SVIs have different distortions, distributions, and 

background information that do not match RAP and PA -100 K. To fit the 
classification model to the context of SVIs, a fine-tuning process for the 
pre-trained model is needed. We downloaded SVIs for all sample points 

Fig. 1. The area of Hong Kong region and the distribution of SVI sampling sites. There are 70,021 SVIs and 11,467 of them have detected pedestrians.  
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in Hong Kong from Google Street View, maintaining a 50-m separation 
between each pair of sampling locations. Each sample point has four 
SVIs with a direction of 0◦, 90◦, 180◦, and 270◦. All downloaded images 
have a size of 1024*1024 pixels and were taken between 2018 and 2019. 
From them, we selected 2000 SVIs in different scenes (downtown, 
suburban, highway, etc.) to create a dataset for fine-tuning. Three 
trained research assistants participated in pedestrian labeling. Two of 
them performed the labeling while the third one reviewed their results. 
In SVIs, each pedestrian’s face is masked, so we determined age based on 
features other than the face. If a pedestrian has obvious aging 

characteristics such as white hair and a strong hunchback, he or she is 
classified as an older adult. Accurately determining the ages of pedes-
trians remains challenging. Therefore, our research assistants only 
classify them based on their perceived age group, differentiating be-
tween older and non-older adults without specifying their precise age. 
We also discarded the pedestrians 50-m away from a SVI sampling point 
because it is challenging to classify age group with a small image. 
Finally, a total of 1546 pedestrians were labeled, including 708 older 
adults and 838 non-older individuals (Fig. 4). 

Fig. 2. Workflow of the proposed model. (a) Sampling points along the road centerline; (b) Retrieve SVIs from right and left direction; (c) Detect and crop pedestrians 
from SVIs by YOLOv5; (d) Classify pedestrians on age groups by ResNet50. 
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3.4. Detector and classifier 

The target of the object detection model used in this study is to detect 
pedestrians from SVIs and classify them into two age groups. Object 
detection models can be divided into two types based on their pipelines. 
One is one-stage models, such as You Only Look Once (YOLO) series 
(Redmon, Divvala, Girshick, & Farhadi, 2016) and single shot multibox 
detector (SSD) (Liu et al., 2016). The other is two-stage models, which 
segregates detection and classification processes, such as Faster R-CNN, 
which offers better performance than one-stage models (Ren, He, Gir-
shick, & Sun, 2015). In this study, we performed the detection and 
classification process separately to improve the performance of the 
model. First, we used the pre-trained YOLO v5x6 (Redmon & Farhadi, 
2017) to detect pedestrians from SVIs and cropped them down. The 
0.5mAP (mean average precision at IoU 0.5) for the pretrained YOLO 
v5x6 to detect pedestrians in SVIs is 87.7. Next, we classified the crop-
ped pedestrians with our best fitted model. After our pilot study, we 
found that Resnet50 (Koonce, 2021) offered the best tradeoff in terms of 
classification performance, run-time, and memory consumption. 

3.4.1. YOLO model 
As the most popular one-step object detection model series, YOLO 

series has outperformed other object detection models in terms of 

accuracy and speed. The YOLO series also has advantages in detecting 
objects of different sizes and overlapping objects. In terms of effective-
ness and stability, we selected YOLO v5, the fifth versions of YOLO se-
ries, as the detector for our approach. From the YOLO v5 family, we 
selected the YOLOv5x6 model with the largest size, which was pre-
trained on the COCO dataset (Lin et al., 2014) and achieved 72.0 
0.5mAP for the validation dataset. 

The basic architecture of YOLOv5 is shown in Fig. 5. The whole 
network consists of five sections: Input, Backbone, Neck, Head, and 
Output. The backbone section functions as the feature extractor and 
transfers input images into feature maps. The neck section receives 
feature maps from the backbone and combines these features into logic 
groups for detection. The head section is also called the detection sec-
tion. It outputs vectors containing the probability for each class, the 
position and the size of each object. 

3.4.2. Resnet 50 model 
Classifying pedestrian age groups from SVIs requires deep CNN due 

to high intraclass variance and low interclass variance. Training deep 
neural networks is challenging due to the vanishing gradient problem 
(Habibzadeh, Jannesari, Rezaei, Baharvand, & Totonchi, 2018) and the 
degradation problem (Wichrowska et al., 2017). To address these 
challenges, the Residual Network (ResNet) was developed. The 

Fig. 3. (a), (b), (c) are non-older pedestrian masked with face in RAP and PA-100 K, and (d), (e) are older pedestrian masked with face in RAP and PA-100 K.  

Fig. 4. (a), (b), (c) are non-elderly in SVI, and (d), (e) are older adults in SVI.  
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fundamental part of ResNet is batch normalization. Batch normalization 
modifies the input layer to improve the performance of the network and 
reduce the shifting of covariates. Another key area is identity connec-
tivity, which helps ResNet’s network mitigate the vanishing gradient 
problem. 

In this study, we used the ResNet50 (Fig. 6), which is a variant of 
ResNet model and can handle the input images with height, width as 
multiple of 32 and 3 as channel width. The output of ResNet50 is the 
probability of each class, and we selected the class with higher proba-
bility as the classified result for each pedestrian cropped from SVIs. 

3.5. Model training and evaluation 

First, we randomly split the NSD dataset: 75% for training dataset, 
25% for validation. Second, we employed YOLO v5x6 to crop each 
pedestrian from labeled SVIs to create our customized dataset. Third, we 
again randomly split the customized data: 70% for training, 20% for 
validation, and 10% for test. 

Next, we conducted three groups of experiments. In the first group, 
we trained models with only NSD dataset. In the second group, we 
trained models with only the training and the validation dataset of 
customized SVIs. In the third group, we pretrained the models using the 
NSD dataset and fine-tuned models with training and validation dataset 
of customized SVIs. All three groups of models are tested by the test 
dataset of customized SVIs. The results of the three groups of experi-
ments are shown in Table 1. The result showed that the model pre- 

trained in the NSD and fine-tuned in cropped SVIs performed the best 
with an accuracy of 87.1%. Please note that the age categorization of 
cropped SVIs is determined by research assistants based on their 
perceived age group. It only differentiates between older and non-older 
adults without specifying their precise age. In this study, the attribute of 
AgeAbove60 in NSD is aligned with the classification of older adult in 
Cropped SVIs. 

4. Pedestrian detection and recognition in Hong Kong 

4.1. Geographic distribution 

The final trained model detected 35,353 pedestrians from 70,021 
SVIs in Hong Kong, including 7375 older pedestrians and 27,978 non- 
older pedestrians. We mapped and visualized the number of detected 

Fig. 5. Overview of the architecture of YOLO v5.  

Fig. 6. Overview of the architecture of ResNet50.  

Table 1 
Comparison of model performances through different training dataset.  

Models Attribute Training dataset Test 
dataset 

Highest 
accuracy 

Resnet50 Older adult Cropped SVIs Cropped 
SVIs 

82.2% 

Resnet50 AgeAbove60/ 
Older adult 

RAP and PA-100 K Cropped 
SVIs 

76.8% 

Resnet50 AgeAbove60/ 
Older adult 

RAP and PA-100 
K/Cropped SVIs 

Cropped 
SVIs 

87.1%  

D. Liu et al.                                                                                                                                                                                                                                      



Computers, Environment and Urban Systems 105 (2023) 102027

7

older pedestrians and the proportion of older pedestrians among all 
detected pedestrians within different spatial units in Hong Kong. 

More older pedestrians were detected in dense urban areas of Kow-
loon and Hong Kong Island (Fig. 7a and b). In terms of proportions, a 
high proportion of older pedestrians among all pedestrians were found 
in TPUs distributed around Hong Kong Island and new towns in New 
Territories (Fig. 7c and d). 

4.2. Spatial mismatch between older pedestrians and older residents 

To analyze any potential spatial mismatch between detected older 
pedestrians and older residents, we conducted two comparative ana-
lyses. We collected resident population in a specific area in 2020 from 
WorldPop (worldpop.org). This dataset estimates population residing in 
each 100 m*100 m grid using census data in 2020 and a random forest 
model (Stevens, Gaughan, Linard, & Tatem, 2015). In urban areas, a 
walk of 500 m or less to the nearest amenity is a desirable distance, so 
researchers typically use 500-m square grids to study walking behavior 
and walkability (Dovey & Pafka, 2020). Therefore, we aggregated the 

data of both detected pedestrians and WorldPop into 500 m* 500 m 
square grid. 

First, we compared the number of detected older pedestrians and the 
population of older residents in each grid. We classified all grids with 
high or low (H or L) values of detected older pedestrians and older 
residents, according to the median value of the two variables respec-
tively. Accordingly, we classified the grids into four groups: H/H (high 
number of older pedestrians and high population of older residents), H/ 
L, L/H, and L/L (Fig. 8 and Tables 2 & 3). In Table 3, we conducted t-tests 
on built environment factors for four pairs of comparisons (H/H grids vs. 
non-H/H grids, L/H vs. non-L/H, H/L vs. non-H/L, L/L, vs. non-L/L in 
Fig. 8). 

H/H grids are mainly located in high density residential area of 
Kowloon and Hong Kong Island such as Sham Shui Po, Yau Ma Tei, and 
new developed town centers in New Territories. They have higher 
population density and proportion of residential area, and shorter dis-
tance to MTR station and to city center, compared with other grids. L/H 
grids are mainly concentrated in major commercial hubs or mixed used 
areas such as Tsim Sha Tsui, Central District. They have higher 

Fig. 7. The geographic distribution of detected older pedestrians in Hong Kong. (a) number of older pedestrians in TPUs; (b) number of older pedestrians in road 
segments in the core urban area (including most part of Hong Kong Island and Kowloon); (c) the proportion of older pedestrians among all detected pedestrians in 
TPUs; (d) the proportion of older pedestrians among all detected pedestrians in road segments in the core urban area. 
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proportion of commercial area, lower population density and proportion 
of residential area, and shorter distance to city center. H/L grids are 
mainly located in residential areas (e.g., Waterfall Bay, Tsing Shan 
Tsuen) scattering in the perimeter of H/H grids. They have higher 
population density, and proportion of residential area, lower proportion 
of commercial area, and shorter distance to MTR stations. The L/L areas 
are scattered in the suburban areas or low-density residential areas of 
Hong Kong Island (e.g., Stanley), Kowloon (e.g., Yau Tong), and the New 
Territories (e.g., Sai Kung), often far away from city center. They have 
longer distance to MTR stations and city center, lower population den-
sity, proportion of residential area and proportion of commercial area. 

5. Walking index 

5.1. Definition 

We believe that the spatial mismatch between the pedestrian de-
mand and residential population can reveal the degree of walking 
attractiveness, i.e., to degree to which an area is conductive to walk. The 
distribution of residential population has a direct impact on collective 
walking behavior, e.g., pedestrian demand. Given other conditions are 
constant, an area with higher residential population will have higher 
pedestrian demand. Conversely, assuming equal population density 
between two areas, differences in pedestrian demand may reveal a dif-
ference in walking attractiveness. Furthermore, walking attractiveness 
may be different for certain groups of people, such as older or disabled 
pedestrians (Adkins et al., 2017; Forsyth et al., 2009; Frank et al., 2008; 
Lovasi et al., 2008). Therefore, we constructed a new walking index 
using the ratio of observed pedestrian demand of a given group and the 
residential population of that group with the following equation: 

Walking Indexi
a =

Ni
a

Pi
a

(1)  

where Ni
a represents the number of pedestrians with attribute a in the i- 

th geographic unit, Pi
a represents the total residential population of 

Fig. 8. Classification of urban areas into four groups, according to the population of older residents and the number of detected older pedestrians on SVIs.  

Table 2 
Features and representative examples of four groups of areas in Fig. 8.  

Type of area Features Representative 
location 

Representative aerial view 

High number 
of older 
residents 
and high 
number of 
detected 
older 
pedestrians 
(H/H) 

High density 
residential 
area 

Sham Shui Po, 
Yau Ma Tei 

Low number 
of older 
residents 
and high 
number of 
detected 
older 
pedestrians 
(L/H) 

High density 
commercial & 
mixed used 
area 

Tsim Sha Tsui, 
Central District 

High number 
of older 
residents 
and low 
number of 
detected 
older 
pedestrians 
(H/L) 

Medium 
density 
residential 
area 

Waterfall Bay, 
Tsing Shan 
Tsuen 

Low number 
of older 
residents 
and low 
number of 
detected 
older 
pedestrians 
(L/L) 

Suburban and 
mountainous 
area 

Stanley, Sai 
Wan Shan, Yau 
Tong 

Source: Google Inc. 
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people with attribute a in the i-th geographic unit. 
The formula can be directly applied to older adults. The walking 

index for older adults (OWI) could be measured by the ratio of number of 
older pedestrians and population of older residents in an area. Similarly, 
it can also be used for other age groups, certain population subgroups, or 
all people. 

To obtain the total population in customized units, we again 
collected data from WorldPop in 2020. We calculated the walking index 
for both older adults (OWI) and all people (WI) for the whole Hong 
Kong. 

5.2. Distribution of walking index for older people (OWI) 

We calculated the spatial distribution of OWI based on three spatial 
units: TPUs, 500 × 500 m rectangular grids and 200 × 200 m rectan-
gular grids respectively. The results are visualized in Fig. 9(a)-(c). Of the 
ten TPUs with the highest OWI, three are in the northeast corner of the 
Central and Western District, four are in Tsim Sha Tsui and one is in 
Causeway Bay, which are the city center of Hong Kong where many 
shopping malls are located. Far away from city center, Sai Kung 
Peninsula also has a high OWI, which remains untouched by urbaniza-
tion and is also a popular place for hiking. Of the ten TPUs with observed 
pedestrians and the lowest OWI, nine are scattered in New Territory. 

5.3. Spatial mismatch between WI and OWI 

This study mapped both WI and OWI in each 500 × 500 m rectan-
gular grid in the same way. We classified all grids into high or low values 
of these two variables, according to their respective median value. 
Accordingly, we divided the grids into four groups: H/H (high WI and 
high OWI), H/L (low WI and high OWI), L/H (low WI and high OWI), 
and L/L (low WI and low OWI) (Fig. 10 and Table 4). In Table 5, we 
conducted t-tests for built environment features for four pairs of com-
parisons (H/H grids vs. non-H/H grids, L/H vs. non-L/H, H/L vs. non-H/ 
L, L/L, vs. non-L/L in Fig. 10). 

H/H areas are mainly concentrated in compact high and middle 
density residential areas such as Central District and Mong Kok. They 
have higher proportion of commercial area, lower proportion of 

residential area, population density, and shorter distance to city center, 
compared with other areas. L/H areas scatter around H/H areas espe-
cially in neighborhoods inhabited by affluent residents, such as the Mid- 
Levels. They have shorter distance to MTR stations. H/L areas are often 
dispersed throughout suburban and mountainous area with adequate 
green space. They have longer distance to MTR stations and city center, 
lower population density, proportion of residential area and the pro-
portion of commercial area. L/L areas are mainly located at high and 
middle-rise residential area in New Territories and peripheries of Kow-
loon and Hong Kong Island especially in some new towns. They have 
higher population density and proportion of residential area, lower 
proportion of commercial area, and shorter distance to MTR stations, 

5.4. The validation of WI and OWI 

To validate the new walking index, we used data from the Hong Kong 
Travel Characteristics Survey (TCS) conducted by the Transport 
Department of the Hong Kong government in 2012. The data from TCS 
were acquired from a large representative sample of 101,385 residents 
in Hong Kong. The respondents were asked to provide individual in-
formation (e.g., age, gender, occupation, address) and trip information 
(e.g., trip mode, trip frequency) during the last 24 h up to the surveying 
time. 

We ran two multivariate linear regressions to predict the WI (Model 
1) and OWI (Model 3) and as independent variables (Table 6). As a 
comparison, we conducted two more models to predict frequency of 
walking trips of all respondents (Model 2) and older respondents (Model 
4) with built environment factors. The unit of analysis is TPU for all 
models. 

Built environment factors include population density (Barnett et al., 
2017), street intersection density (Cerin, Nathan, Van Cauwenberg, 
Barnett, & Barnett, 2017), land-use diversity (Thornton et al., 2017), bus 
stop density (Christiansen et al., 2016), and the coverage of Mass transit 
rail (MRT) stations (Fenton, 2005). We geolocated all respondents in 
QGIS based on their dwelling locations. Population density was defined 
as the resident population per unit of area and obtained from Census and 
Statistics Department of Hong Kong. Street intersection density was 
defined as the number of street intersections per unit area. The land use 

Table 3 
The t-value of the t-test of built environment factors for four pairs of comparisons (H/H grids vs. non-H/H grids, L/H vs. non-L/H, H/L vs. non-H/L, L/L, vs. non-L/L in 
Fig. 8).   

Population density Commercial proportion Residential proportion Distance to MTR Distance to city center 

H/H vs. non-H/H 10.02** 0.29 4.87** − 3.87** − 2.55** 
L/H vs. non-L/H − 4.41** 4.99** − 3.20** − 0.10 − 1.84** 
H/L vs. non-H/L 4.41** − 1.50* 2.52** − 1.35* 1.07 
L/L vs. non-L/L − 10.02** − 2.91** − 4.29** 5.19** 3.24*  

* p < 0.05. 
** p < 0.01. 

Fig. 9. Spatial distribution of OWI. (a) OWI at TPUs in Hong Kong; (b) OWI at 500 × 500 m rectangular grids in Hong Kong; (c) OWI at 200 × 200 m grids for the 
main area of Kowloon and Hong Kong Island. 
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diversity was defined as the entropy score of land use distribution and 
calculated as ( − 1)

∑
i(piln(pi) )/ln(n), where pi is the share of specific 

land use and n is the number of land use types. Bus stop density was 
calculated as the number of bus stops per unit of land area. The coverage 
of Mass Transit Railway (MTR) stations was defined as the percentage of 
land covered by the 500 m buffer of MTR stations. Both dependent 
variables and independent variables were converted into Z scores to 
obtain standardized coefficients, which allow us to compare the effect 
sizes of different factors in predicting the outcome. 

Compared with average walking frequency from TCS, both WI and 
OWI have higher association with built-environment factors. Hence, our 
approach may better predict overall walking demand than traditional 
travel survey. It is worth noting that individual travel survey data may 
exhibit fluctuation due to the individual attributes of respondents. As 
such, the WI and OWI present a superior alternative to evaluate col-
lective pedestrian activity. 

6. Discussion 

6.1. Methodological contribution 

Previous studies have shown SVI to be a valuable data source for 
automatic and large-scale urban environment audits, with many 
focusing on static features such as buildings, roads, and greenery. Dy-
namic elements, including vehicles, pedestrians, and bicycles, have not 
been adequately studied primarily because of their volatility over time. 
Therefore, researchers typically measure pedestrian volumes and 
walking behavior through field observation or questionnaires. Field 
counts are time-, labor-, and cost-intensive, which is impractical for a 
large area (Lee & Talen, 2014). Self-reported data are prone to recall 
bias and may be difficult to be geolocated (Saelens & Handy, 2008). 

Recently, some researchers have suggested that estimating pedes-
trian demand using SVI is feasible. The number of pedestrians at a given 
location at a given time can be estimated from a single SVI image. As the 
sample size increases exponentially (e.g., hundreds of SVIs at different 
locations and/or times in an area), the pedestrian volume estimate be-
comes closer to the true value for that area, although the estimate for a 
particular location or time may be very incorrect (Richards, 1961). 
Recent empirical studies have demonstrated the consistency of pedes-
trian volume between the estimate by SVI and the field audit, which 
reached 0.87 Cronbach’s alpha under certain circumstances (Chen et al., 
2020). This opened new possibilities for assessing pedestrian activity at 
a scale, depth, and scope inaccessible to traditional assessment methods. 

In this study, we extend previous studies by developing a novel 
approach to assess pedestrian age groups in SVI. First, we used the 
existing pedestrian dataset RAP and PA -100 k as part of the training 
samples, which contain the age information to pre-train the models. 

Fig. 10. Classification of urban areas into four groups, according to the proportion of older residents and the proportion of older detected pedestrians on SVI.  

Table 4 
Features and representative examples of four groups of areas in Fig. 9.  

Type of 
area 

Features Representative 
location 

Representative aerial view 

High 
WI 
and 
high 
OWI 
(H/ 
H) 

Compact High and 
Mid-rise residential 
area 

Central District, 
Mong Kok 

Low WI 
and 
high 
OWI 
(L/ 
H) 

Open High and Mid- 
rise residential area 

Mid-levels, 
Quarry Bay 

High 
WI 
and 
low 
OWI 
(H/ 
L) 

Suburban and 
mountainous area 

Lantau Island, 
Kam Tin 

Low WI 
and 
low 
OWI 
(L/L) 

High and Mid-rise 
residential area in 
New Territories and 
fringe of Kowloon 
and Hong Kong 
Island 

Sha Tin, Chai 
Wan 

Source: Google Inc. 
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Second, we created our own training dataset based on SVI to refine the 
pre-trained model. After the two-stage training, the accuracy of the 
model tested on pruned SVIs reached 87.1%. Using this approach, we 
are able to identify older pedestrians in SVI. Our efforts can help create 
healthy cities and aging-friendly communities, which are critical for an 
aging society. It is also possible to use our approach to assess pedestrians 
of other age groups or specific attributes (e.g., female, or people using 
wheelchair). 

More importantly, our approach also offers a unique advantage over 
traditional research studies. To assess the built environment’s impact on 
travel behavior, traditional travel survey and research focused on built 
environment features around home. However, on average, Hong Kong 
people spend 40% of their waking time far away from home (Census and 
Statistics Department, C. and S. D, 2013). It has been pointed out that 
the uncertainty in identifying the spatial areas that influence individual 
behaviors may hinder our understanding of the environment-behavior 
link (Kwan, 2012). Therefore, to better understand the impact of built- 
environment context on walking behavior, we use the actual observed 
pedestrians to estimate walking demand in a given area. 

Conventional environmental behavior research has typically 
employed travel surveys to obtain data on pedestrian walking patterns, 
specifically focusing on individual walking behavior. However, this 
study utilizes WI/OWI as a metric for assessing collective pedestrian 
activity on streets. We demonstrated that WI/OWI has a stronger cor-
relation with the built environment features compared with individual 
walking behavior, which is in line with one previous study (Jiang et al., 
2021). This also suggests that WI/OWI may serve as a more reliable 
measurement for evaluating walking environments, as opposed to travel 
surveys which are susceptible to the influence of personal attributes. 

Therefore, such an approach can advance the field of research by 
providing a much-needed spatial match between the built environment 
and collective pedestrian activity. 

6.2. Spatial distribution of older pedestrian and OWI in Hong Kong 

Using our new approach, we measured the spatial distribution of 
older pedestrians in Hong Kong. Several results are worth noting. First, 
there is an obvious spatial mismatch between older pedestrians and 
older residents. High number of older residents and high number of 
detected older pedestrians(H/H) grids concentrated in high-density 
compact development areas which are characterized by high-rise 
buildings and mixed land uses. These areas provide older residents 
with easy access to vital amenities, including healthcare, transportation, 
and commerce, situated within a walkable range, particularly address-
ing their mobility constraints (Burton, 2000). Low number of older 
residents and high number of detected older pedestrians(L/H) grids have 
built environment features similar to those of H/H areas, but with a high 
concentration of commercial destinations and fewer residential build-
ings. As a result, such built environments attract a large flow of older 
pedestrians living in other areas to fulfill utilitarian needs, such as going 
to a restaurant or visiting a doctor. These areas, such as Tsim Sha Tsui, 
Central District, often have high costs of living, which may exceed the 
affordability of older adults. High number of older residents and low 
number of detected older pedestrians (H/L) grids mainly scattered in 
low- and middle- density residential areas. Low number of older resi-
dents and low number of detected older pedestrians (L/L) areas are 
scattered in the suburban areas or low-density residential areas of Hong 
Kong Island (e.g., Stanley), Kowloon (e.g., Yau Tong), and the New 
Territories (e.g., Sai Kung). Both H/L and L/L areas are often far away 
from city center, and amenities, services, and healthcare facilities are 
scarce (Sun & Lau, 2021). The lack of walking destinations may hinder 
walking activities among older adults. Furthermore, residents living in 
those areas often have other transportation options, e.g., private vehi-
cles, which partly reduce the need of walking. 

To account for such spatial mismatch, we develop a new walking 
index for older people (OWI) based on the ratio of observed pedestrians 
to the resident population. It can reflect the quality of urban design, 
human activity, and urban vitality for older adults by measuring the 
extent to which they are willing to walk. Most studies quantify the 
walkability of a given area based on features of the built environment 
that support walking, such as the density of intersections, the continuity 
and directness of paths, and the presence of sidewalks and other 
pedestrian infrastructure (Chen, Lu, et al., 2022; Li et al., 2021; Yang 
et al., 2019). However, the availability and accessibility of pedestrian- 
friendly infrastructure may not reflect actual walking behavior in such 
an area. Our walking index can help fill this gap by accounting for 
collective walking behavior. 

6.3. Spatial mismatch between WI and OWI 

This study focuses on aging-friendly built environment and the 
pedestrian demand of older adults. Due to the unique needs and physical 
abilities of older pedestrians, locations that attract general pedestrians 
may not accommodate the older pedestrians. Therefore, we mapped the 

Table 5 
The t-value of the t-test of built environment factors for four pairs of comparisons (H/H grids vs. non-H/H grids, L/H vs. non-L/H, H/L vs. non-H/L, L/L, vs. non-L/L in 
Fig. 10).   

Population density Commercial proportion Residential proportion Distance to MTR Distance to city center 

H/H vs. non-H/H − 2.41** 4.58** − 2.25** 0.70 − 2.14** 
L/H vs. non-L/H 0.45 − 0.83 0.18 − 1.67** − 0.63 
H/L vs. non-H/L − 4.38** − 1.48* − 1.90** 3.64** 2.72** 
L/L vs. non-L/L 5.11** − 2.95** 3.55** − 2.16** 0.66 

Note. *: p < 0.05; **: p < 0.01. 

Table 6 
Results of multivariate regression model of OWI and average walking frequency 
per older respondents from TCS with built-environment factors as independent 
variables.   

Model 1 Model 2 Model 3 Model 4 

Dependent 
variable 

WI Walking 
frequency of all 
respondents 

OWI Walking 
frequency of 
older 
respondents  

Coef. (SE) Coef. (SE) Coef. (SE) Coef. (SE) 
Street 

intersection 
density 

0.201 
(0.069) ** 

− 0.013 (0.011) 0.185 
(0.059) * 

− 0.007 (0.005) 

Population 
density 

− 0.292 
(0.062) 
*** 

− 0.004 (0.011) − 0.202 
(0.071) 
** 

− 0.004 (0.005) 

Bus stop 
density 

0.350 
(0.083) 
*** 

0.012 (0.005) * 0.347 
(0.086) 
*** 

0.024 (0.005) 
*** 

MTR station 
500 m 
coverage 

0.283 
(0.062) 
*** 

0.040 (0.010) 
*** 

0.213 
(0.064) 
** 

0.006 (0.004) 

Land use 
diversity 

0.175 
(0.059) ** 

0.016 (0.011) 0.222 
(0.061) 
*** 

0.014 (0.004) ** 

Adjusted R2 0.532 0.006 0.507 0.006 

Note. *: p < 0.05; **: p < 0.01; ***: p < 0.001. 
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spatial mismatch between WI and OWI to explore the spatial disparity 
with four conditions (H/H, L/H, H/L, and L/L), and further identity the 
built environment features associated with each condition. 

High WI and high OWI areas (H/H) are characterized by higher 
proportion of commercial area, lower proportion of residential area and 
a closer distance to the city center, compared with other areas. A high 
concentration of commercial spaces increases the availability of various 
services, shopping, dining, and entertainment options within walking 
distance. The areas close to the city center tend to have better pedestrian 
infrastructure, such as sidewalks, crosswalks, and street lighting, which 
enhances the safety and comfort of pedestrians. Low WI and high OWI 
(L/H) areas have shorter distances to MTR stations compared with other 
areas. This indicates that older adults are more sensitive to the acces-
sibility of public transit compared with the general population. Acces-
sibility to MTR is particularly appealing to older adults, because it is 
reliable, comfortable, and cost-effective (Hess, 2009; Kostyniuk & 
Shope, 2003) . 

High WI and low OWI (H/L) areas are further away from MTR sta-
tions and the city center, and have lower proportions of commercial 
areas, compared with other areas. This further underscores the notion 
that older adults are more sensitive to the accessibility of commercial 
destinations and public transport. Low WI and low OWI areas (L/L) are 
featured by higher population density and proportion of residential area, 
a lower proportion of commercial, and further away from the city cen-
ter, compared with others. Most of these areas are high-density housing 
estates featuring multiple high-rise residential buildings in New Terri-
tories and the fringe of Kowloon and Hong Kong Island. The lack of 
commercial facilities and dense living environment may hinder the older 
adults’ willingness to walk. 

6.4. Limitations and future research 

Based on this study, four possible directions for future research 
emerge. First, this study has identified associations between older 
pedestrian count and built environment factors. However, more rigorous 
research designs (e.g., natural experiments) are necessary to find out any 
causal relationships between pedestrian volume, built-environment 
factors and older adults’ willingness to walk. Second, pedestrian 
behavior can be measured using individual-level mobility data extracted 
from mobile data to understand individual walking behavior and its 
geographic context. Third, other attributes of pedestrians such as gender 
and disability are also meaningful and should receive more attention. 
Fourth, population-weighted exposure and the Gini index of exposure of 
different groups of people to the built environment can be further 
investigated. 

7. Conclusion 

In this study, we proposed a novel approach to automatically 
recognize older adults using SVI, which could be used to estimate 
pedestrian demand and evaluate the walking environment for older 
people. Our proposed model achieved high accuracy (87.1%) in 
detecting older pedestrians from SVIs. The results of the multivariate 
regression models illustrated that the ratio of older pedestrians to older 
residents has the potential to be a good indicator of walking attrac-
tiveness for older adults, especially in high residential areas. The result 
also indicated a spatial mismatch between the walking and resident 
population for older people. Researchers and urban planners should 
consider the distribution and needs of older pedestrians for further 
urban planning interventions. 
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