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A B S T R A C T   

Accumulating evidence has confirmed that urban greenery, especially street trees, is beneficial to walking be
haviors. Existing street greenery exposure-walking behavior studies have focused on the quantity of greenery, 
which is often measured by normalized difference vegetation index (NDVI) or green view index (GVI). However, 
some important qualities of street trees, the dominant component of urban greenery, were often overlooked, due 
to the labor-intensive and expensive nature of on-site surveys. To address this issue, we proposed a cutting-edge 
deep learning technique to identify street tree species at the individual tree level. We established a citywide 
dataset of all street trees with species information via 185,831 Baidu Street View images (BSV) in Jinan, China. 
Population-level walking intensity, measured by pedestrian volume, was retrieved from BSV images using Baidu 
AI. We further adopted spatial regression models to investigate the association between pedestrian volume and 
street tree characteristics, including street tree abundance (number of street trees), species richness (number of 
unique tree species) and species mix (the degree of diversity of tree species). The built environment and urban 
greenery covariates were adjusted in the models. The results indicate that the street tree abundance and species 
mix are positively associated with pedestrian volume. Species richness is not associated with it. Besides, spatial 
mismatch is identified between abundance and species mix of street trees in the study area. Hence, to facilitate 
walking behavior and deliver related health benefits, it is necessary to develop fine-grained measures of street 
greenery features.   

1. Introduction 

Street trees have long been recognized for their vital role in urban 
sustainability, providing a range of ecosystem services that enhance 
environmental quality and human well-being (Davies and Lafortezza, 
2017). From improving air and water quality to mitigating urban heat 
islands, from fostering social cohesion and improving mental health, the 
benefits of urban street trees are diverse and substantial (Donovan and 
Butry, 2010). While the belief that "trees are beneficial" has been chal
lenged due to concerns over ecological disturbances (Roy et al., 2012), 
infrastructure conflicts (Conway and Yip, 2016), and cost management 
(Lara A. Roman et al., 2021), the multitude of advantages offered by 

street trees within urban contexts remains unassailable. 
Street trees, an essential element of urban greenery, significantly 

influence the urban micro-climate, air quality, and serve as a catalyst for 
physical activity, thereby impacting public health positively (Lee et al., 
2016; Markevych et al., 2017). The allure of tree-canopied streets often 
positions them as the preferred locale for a myriad of physical activities, 
such as walking, cycling, and jogging, emphasizing their accessibility 
and the pleasant ambiance they offer (Ki and Lee, 2021; Yi Lu, 2019; L. 
Yang et al., 2024). Besides, exposure to street trees improves in
dividuals’ aesthetic enjoyment of urban spaces (Camacho-Cervantes 
et al., 2014) and increases both the likelihood and duration of active 
transportation (Yi Lu, 2019; L. Yang et al., 2020), which in turn reduces 
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long-term stress (D. Li and Sullivan, 2016) and the risk of many chronic 
diseases (Mitchell and Popham, 2008; Wei et al., 2023). 

In a nutshell, street greenery has positive effects on physical activity 
and walking behavior (Cambra and Moura, 2020; L. Yang et al., 2021). 
As demonstrated in previous reviews, researchers often measure overall 
level or quantity of urban greenery through remote sensing imagery or 
street view images (B. Jiang et al., 2017; Ye et al., 2019). Due to 
methodological limitations, citywide tree-species information at the 
individual tree level is hard to assess. Such limitation may lead to po
tential neglect of the aesthetic effect of diverse street trees, which may 
also affect walking and physical activity (Akpinar, 2016; Tsai et al., 
2019). For instance, greenspaces with diverse tree species (e.g., urban 
park) may create a better aesthetic experience for pedestrians than 
woodland with a single tree species (e.g., forest nursery). Therefore, 
constructing a citywide street tree inventory with tree species infor
mation and exploring the association between street tree features and 
pedestrian volume is a necessary and novel research front. 

While there are existing studies that utilize LiDAR data for tree 
species identification (Michałowska and Rapiński, 2021), various chal
lenges in methodology, budgeting, and human resource allocation 
render most of the current approaches largely ineffective when it comes 
to creating a comprehensive citywide tree inventory. Only a handful of 
cities have succeeded in constructing detailed street tree databases 
(Nielsen et al., 2014; Lara A Roman et al., 2017). To address the above 
gaps, we employed a novel deep learning approach to detect and classify 
street trees via street view images (SVIs) to build citywide tree in
ventory. We further investigated the association between street tree 
characteristics and pedestrian volume in Jinan, China after adjusting for 
other potential walk-promoting urban greenery and built environment 
covariates. In the light of prior evidence, we hypothesized positive ef
fects of street tree density, species richness and species mix upon 
pedestrian volume. 

2. Literature review 

2.1. Fine-grained measurement of greenery exposure 

To measure urban greenery at a large scale, there are two main ap
proaches, namely top-down and human-eye level greenery assessment 
(B. Jiang et al., 2017; Ye et al., 2019). Top-down indices, e.g., tree cover 
density and normalized difference vegetation index (NDVI) (B. Jiang 
et al., 2017), were mainly calculated by the high-resolution remote 
sensing images and widely applied to assess urban greenery from na
tional to neighborhood scale (Klemm et al., 2015). The top-down 
approach has been widely adopted by forestry departments and urban 
planners to measure the local greenness level due to the accessibility of 
remotely-sensed images and the efficiency of such measurement (He 
et al., 2022; L. Jiang et al., 2021). However, it is uncertain whether such 
greenery is physically or visually accessible by the public. Indeed, the 
overhead view of greenery is different from the street landscape 
perceived by pedestrians (X. Li et al., 2015). For example, the vegetation 
under tree canopies and in urban vertical greening systems might be 
overlooked (Yi Lu, 2019). 

To address the limitations of the overhead-view greenery assessment, 
scholars have adopted street view images to assess eye-level greenery in 
recent years (X. Li et al., 2015). By retrieving panoramic images with 
geolocation information along streets, previous studies have calculated 
Green View Index (GVI) to simulate the perception of street greenery (Yi 
Lu, 2019; Ye et al., 2019). Some studies reported that street view images 
were more accurate than remote sensing images in measuring exposure 
to green spaces for pedestrians (Leslie et al., 2010; Ye et al., 2019). As 
the primary metric for assessing eye-level greenery, GVI evaluated the 
proportion of green pixels in a street view image, i.e., the number of 
green exposures (Klemm et al., 2015; X. Li et al., 2015). However, it 
could not measure the specific vegetation information represented by 
the green pixels, such as the species, number, and species diversity of 

street trees (D. Liu et al., 2023). 
Inequality in street greening represents another critical dimension 

warranting attention. In some U.S. cities, the forestry department’s 
primary consideration in allocating street trees was to provide shade and 
ecological services (Ketcham, 2015), As a result, spatial inequality of 
street trees, both in terms of quantity and quality, might exist across 
geographic areas and social groups (Lin et al., 2021). According to 
previous findings, street tree distribution was linked to income and race, 
with affluent communities tending to have more street trees, while 
low-income and minority neighborhoods having less (Apparicio et al., 
2012; Gerrish and Watkins, 2018). In addition to the quantity 
inequality, street tree quality inequality existed among different 
neighborhoods and streets (Avolio et al., 2018). For two streets with the 
same GVI value, the quality of street trees could be vastly different. For 
example, tree species of a car-oriented road tended to be homogeneous 
(Ferrer, Ruiz, and Mars, 2015), while a walking-oriented street generally 
provided a plentiful and diverse combination of tree species to enhance 
walking experience (Hegetschweiler et al., 2017). Therefore, it is 
beneficial to obtain detailed street tree information to expand our un
derstanding of the link between street trees and walking behaviors. 

2.2. Methods to assess detailed street tree information 

There are mainly three methods to acquire detailed street tree in
formation: field audit, surveys, and sensors (including both remote and 
local sensors, e.g., RGB camera). Researchers choose different methods 
based on the availability of funding, time, and labor, as well as the 
required precision of the data (Fassnacht et al., 2016). Field audit refers 
to the direct examination of a tree or other vegetation conducted by 
botanists or other professionals (Wäldchen and Mäder, 2018). This 
method could obtain accurate and complete information about each 
individual tree, but it is laborious and time-consuming. Hence, field 
audit is often suitable for small-scale examination. Survey approach 
gathered data from authorities or citizens by questionnaires (Schaminée 
et al., 2009), which is less costly but also less precise compared with 
field study. With the development of big data technology and machine 
learning, extracting information from pictures obtained from 
cutting-edge sensors has been widely applied in assessing tree infor
mation. Light Detection and Ranging (LiDAR) sensors (Bauwens et al., 
2016; Sankey et al., 2017), hyperspectral cameras (Sankey et al., 2017), 
multi-spectral cameras (Amiri et al., 2018) and normal RGB imaging 
cameras (Schiefer et al., 2020), loaded on satellite (Pu et al., 2018), 
aircraft (Sankey et al., 2017; Schiefer et al., 2020), terrestrial vehicles 
(Bauwens et al., 2016) are used in different tasks. As a kind of 
terrestrial-based RGB images, Street View Image is emerging in urban 
greenery studies and gaining traction due to its wide coverage and open 
access (Berland and Lange, 2017; Yi Lu, 2019). 

To classify plants, traditional studies often focused on one or multi
ple significant features such as the shape of the leaf or the color of the 
flower (Caglayan et al., 2013; Ren et al., 2012). With the development of 
computer technology, researchers have employed metrics of these fea
tures extracted by humans or computer vision algorithms to automati
cally classify plants with machine learning algorithms such as support 
vector machine (SVM) (Kazmi et al., 2015), k-nearest neighbors (K-NN) 
(Yigit et al., 2019) and random forest (RF) (Immitzer et al., 2012). The 
emergence of convolutional neural network (CNN) has markedly 
enhanced the capability of computer vision (O’Shea And Nash, 2015). 
Recently, CNN has been extensively utilized for plant identification and 
classification (Alzubaidi et al., 2021; Mochida et al., 2018). 

2.3. Collective walking behavior 

The evolving methods for street tree assessment reflect a growing 
scholarly interest in the broader dimensions of benefits of street trees 
(Zhang et al., 2017). Green spaces are not merely beneficial for biodi
versity and environmental quality; they also play a pivotal role in 
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enhancing the social and physical well-being of urban communities 
(Reyes-Riveros et al., 2021). This is particularly significant in light of the 
fast-paced lifestyle caused by global urbanization, which has not only 
led to a general lack of sufficient physical activity but also precipitated a 
series of public health issues for urban residents (Y. Jiang et al., 2022; 
World Health Organization, 2020). Walking is an accessible form of 
physical activity because it causes minimal injury risk and therefore is 
suitable for people with different physical or socioeconomic conditions 
(Litman, 2003). Previous studies have often assessed individual-level 
walking behavior (i.e., duration or frequency of walking) via question
naires or surveys, because these studies focused on the potential health 
benefits of walking for individual person (Y. Jiang et al., 2021; Y. Yang 
et al., 2019). 

Some studies focused on collective walking behavior defined as 
population-scale walking patterns such as pedestrian volume on streets 
(Chen et al., 2022; Y. Jiang et al., 2021). This behavior has been shown 
to enhance urban vibrancy (Chen et al., 2022), boost residents’ 
well-being (Wolf and Wohlfart, 2014) and promote social sustainability 
(Herrmann-Lunecke et al., 2020). Collective walking behavior could 
create lively urban spaces, and encourage social interaction and eco
nomic activities (Y. Jiang et al., 2021). Additionally, collective walking 
could reduce the incidence of chronic diseases (e.g., depression, obesity 
and cardiovascular diseases) at the population scale and thus improve 
the overall well-being of urban residents (Y. Jiang et al., 2022; Wolf and 
Wohlfart, 2014). Collective walking behavior also contributes to social 
sustainability by promoting sustainable transportation and reducing air 
pollution and greenhouse gas emissions (Kahn and Morris, 2009; 
Woodcock et al., 2009). 

Furthermore, some scholars argued that collective walking behavior 
is more susceptible to planning interventions as it reflects the general 
walking intensity in an area, irrespective of potential variations of in
dividual walking behavior in this area (Foster et al., 2018). Recent 
studies show that pedestrian count is an appropriate indicator for 
measuring collective walking behavior (Chen et al., 2022). Traditional 
pedestrian volume surveys were conducted mainly through field audits, 
i.e., counting the pedestrian on street or within community based on 
on-site observations, which was time-consuming and labor-intensive (Y. 
Jiang et al., 2021). To effectively acquire pedestrian counts at city scale, 
researchers had recently introduced machine learning techniques to 
automatically detect pedestrians via street view images (Chen et al., 
2020; D. Liu et al., 2023; Yin et al., 2015). A recent validation study in 
Tianjin, China found that the pedestrian volume identified using street 
view images was highly consistent with the results of a field audit in 
terms of general trends (Chen et al., 2020). 

2.4. Greenery exposure and walking behavior 

Urban greenery has attracted increasing attention from walking- 
related studies for its population-scale effects (Y. Lu et al., 2018; Y. 
Yang et al., 2019). Previous studies have shown inconsistency in the 
relationship between top-down greenery and walking time (Persson 
et al., 2019; Z. Wang et al., 2021). The inconsistent findings were related 
to the walking purpose (i.e., recreational and utilitarian walking) (Z. 
Wang et al., 2021; Y. Yang et al., 2019) and different greenery defini
tions (Klompmaker et al., 2018). 

Substantial evidence suggested that eye-level greenery showed pos
itive impacts on walking behavior by promoting pedestrian volume 
(Chen et al., 2022) and enhancing walking duration (Ki and Lee, 2021; 
Y. Lu et al., 2018; Wu et al., 2023). For instance, a study of 90,445 Hong 
Kong residents denoted that street greenery was positively associated 
with odds of walking and walking duration (Y. Lu et al., 2018). A study 
conducted in Seoul also indicated that street greenery was significantly 
associated with both utilitarian and recreational walking time (Ki and 
Lee, 2021). Another study conducted in Shanghai, China, also revealed 
the positive association between eye-level greenery and pedestrian 
volume (Chen et al., 2022). 

However, there was less evidence on the association between 
walking behavior and street tree features, partly due to the difficulty to 
assess street tree information (Sarkar et al., 2015; Vich et al., 2019). 
Previous studies mainly focused on improving pedestrian microclimate, 
such as radiant temperature, humidity, air pollution etc., in order to 
enhance pedestrian comfort (Coutts et al., 2016; Estacio et al., 2022). 
Only a handful of studies have demonstrated significant relationship 
between street tree density and walking behavior. For example, two 
studies from London, UK, and Barcelona, Spain, revealed that street tree 
density had positive impacts on walking frequency and walking time, 
respectively (Sarkar et al., 2015; Vich et al., 2019). 

Apart from the quantity of street trees, street-tree quality, including 
species richness and species diversity, might play a crucial role in 
enhancing walkability. Each tree species has unique biological charac
teristics, including the type of vegetation (e.g., evergreen coniferous or 
deciduous broadleaf) (Galán Díaz et al., 2023), canopy types (Niinemets, 
2010), leaf-on seasons (Miao et al., 2021). A high species diversity of 
street trees not only provided aesthetic value to the streetscape 
(Nagendra and Gopal, 2010) but also increased pedestrian appeal and 
ensured a good walking experience across different seasons, ultimately 
making walking more attractive (Hartig and Kahn, 2016; Voigt et al., 
2014). However, evidence linking pedestrian volume to the quality of 
street trees was still limited (Lin et al., 2021). 

3. Methods 

3.1. Study area 

Jinan is the capital city of Shandong Province and one of the fourteen 
megalopolises in China with a size of 10,224.45 km2 and a population of 
9.20 million in 2020 (National Bureau of Statistics of China, 2020). The 
study was conducted in the core area of Jinan (approximately 
258.27 km2) (Fig. 1), which was considered as the most densely popu
lated and urbanized part in the city. Jinan has a temperate continental 
monsoon climate, and the street trees are mainly broad-leaved decidu
ous trees. For its outstanding achievements in urban green space con
struction, Jinan was awarded as an international garden city in 2019 
(LivCom Committee, 2019). 

Previous evidence indicated that street trees were often dominated 
by one or a limited number of species (J. Liu and Slik, 2022; Shams et al., 
2020). According to statistics, 90% of the street tree inventory in Jinan 
consisted of seven indigenous common taxa of species, i.e., oriental 
plane (Platanus spp.), poplar (Populus spp.), willow (Salix spp.), locust 
(Robinia spp.), cypress (Platycladus spp.), wax tree (Ligustrum spp.) and 
pine (Pinus spp.) (Jinan Landscape Bureau, 2007), which were selected 
as the test trees in this study. 

We generated an 800 × 800 m grid which served as the statistical 
and analytical unit over the study area, considering the area covered by 
a 15-minute walking radius (Y. Lu et al., 2018; Y. Yang et al., 2019) 
(Fig. 1). Grids with no detected pedestrians and no sampling points of 
street view images (mostly in mountainous areas and farmlands) were 
discarded, leaving 395 grids for the final analysis. Pedestrian volume, 
tree species characteristics and all other covariates (i.e., urban greenery 
and built environment variables) were measured for each grid. 

3.2. Street tree species recognition 

3.2.1. Image sources and dataset 
In this study, we chose Baidu Street View (BSV) as the image source. 

Compared with other SVI platforms in mainland China such as Tencent 
Map and Gaode Map, BSV is the only one that provides SVIs at multiple 
seasons. Therefore, we selected BSV images taken between March and 
August for the tree species classification because the street trees tend to 
lush and distinguishable. 

In order to collect BSV images of the study area, we utilized a Python 
script to automatically retrieve data through the Baidu Map API (https: 
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//lbsyun.baidu.com/) at 50-meter intervals along the street network. 
For each sampling point, we collected BSV images from four different 
directions using the heading parameters of 0◦, 90◦, 180◦, and 270◦, 
corresponding to the front, right, back, and left sides of the camera 
mounted on the vehicle. 

Finally, 185,831 BSV images were retrieved from the study area. To 
guarantee a sufficient number of street view images for identifying each 
tree species, we ensured a minimum of 1000 images per species. The 
training dataset was composed of 2700 randomly selected images for 
further analysis. These images were labeled and randomly divided into 
training, validation, and testing sets with proportions of 70%, 20%, and 
10%. The dataset covered various aspects such as context, vegetation 
density, weather, and lighting conditions. The study focused on the 
seven major local species in Jinan city, with any other identified species 
labeled as "other trees." Two trained research assistants labeled the nine 
classes of street trees in the training dataset, ensuring accurate identi
fication of the local species. 

3.2.2. Model of street tree species recognition 
To achieve optimal efficiency and accuracy in our object detection 

task, we followed the latest study (D. Liu et al., 2023) and employed the 
You Only Look Once (YOLO) series, specifically utilizing YOLO v5 as our 
model of choice. This one-step object detection model has gained sig
nificant popularity due to its robust ability to detect objects of varied 
scales and those that overlap, both of which are common characteristics 
found within the environment of urban street trees (Fig. 2). 

In the BSV training dataset, the number of samples for different 

species were severely imbalanced which could undermine the perfor
mance of the model. To cope with this issue, we replaced the original 
loss function with a class-balanced loss function. The Cross-Entropy (CE) 
loss function is the original classification loss function used in YOLOv5: 

CEsoftmax(z, y) = − log(
exp(zy)

∑C

j=1
exp(zj)

) (1)  

where zy represents the anticipated likelihood for a specific species y, 
and C denotes the overall species count. 

According to Cui (2019), the species-weighted loss function utilized 
a weighting method that varied in an inverse relationship with the 
number of valid samples for each species. This approach resulted in an 
increased probability for smaller classes, a decreased probability for 
larger classes, and ultimately generated predicted results that more 
closely aligned with actual outcomes. If species y has Ny training sam
ples and the overall amount of training samples is N, the equation for the 
SB cross-entropy loss is expressed as follows: 

SBsoftmax(z, y) = −
(1– (N–1)

N )

(1 −
Ny − 1

Ny
)

log(
exp(zy)

∑C

j=1
exp(zj)

) (2)  

3.2.3. Street tree characteristics 
To measure the street tree features of each geographic unit and 

evaluate its association with walking behavior, we employed three 

Fig. 1. Study area: (a) Location of Shandong Province in China; (b) Location of Jinan City in Shandong Province; c) the 800 × 800 m grids of Central Jinan, China; d) 
an example of street segments and street view image sampling points in the study area. 
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indices i.e., trees abundance of, tree species richness and species mix. 
The trees abundance was the number of street trees in each grid. The 
precision and recall of the tree identification in our study reached over 
90%. The results indicated that our method exhibited a relatively high 
degree of accuracy when compared with previously findings (Choi et al., 
2022). 

Diverse tree species has long been recognized as a vital feature to 
enhance landscape aesthetics (Gerstenberg and Hofmann, 2016). We 
used two measures to assess the level of tree species diversity: species 
richness and species mix. The species richness was the number of tree 
species in each grid. Considering that tree species identification mainly 
includes seven major local species and “other species”, there were eight 
tree species types in total included in this study. Therefore, for each grid, 
the value of species richness ranged between 0 and 8. However, the 
species richness might be inadequate to describe the level of diversity. If 
a space has a large number of species but dominated by one of them, it is 
not biodiverse. For example, both of two identical grids have two tree 
species, willow and pine. One grid has 50 willow trees and 50 pine trees, 
while the other has 99 willow trees and one pine tree. The tree diversity 
is higher in the former grid than in the latter, despite the species richness 
is identical. Therefore, we also employed the species mix (i.e., Shan
non’s diversity index) as follows (Shannon, 1948). 

H′ = −
∑s

i=1
pilnpi (3)  

pi is the proportion of the number of species i to number of all detected 
plants in a geographic unit. S is the whole number of species in the unit. 
The Shannon index is a widely used measure of biological diversity, with 
higher values indicating greater species richness and evenness within a 
unit. 

3.3. Collective walking behavior 

Collective walking behavior was measured by pedestrian volume 
retrieved from the aforementioned BSV images (N = 185,831) over the 
study area. We used Baidu pedestrian detection AI (https://ai.baidu. 
com/tech/body/num) to obtain pedestrian counts in the BSV images 
(Fig. 3), which was validated by comparing with field audit data (Chen 
et al., 2022; Y. Jiang et al., 2021). The sum of four directionally detected 
pedestrian counts in a sampling point was considered as the pedestrian 
volume of that sampling point. In a manual audit of 100 randomly 
chosen pictures, Baidu AI achieved a highly consistent result with the 
expert judgement (Pearson’s r = 0.92). Therefore, pedestrian flow for 
each grid was determined by calculating the median number of pedes
trians of all the sample points in a grid. 

3.4. Covariates 

3.4.1. Urban Greenery 
In the present study, we calculated urban greenery from eye-level 

view and top-down view, i.e., green view index (GVI) and Normalized 
Difference Vegetation Index (NDVI). GVI was usually regarded as a 
measure for the street greenery perceived by pedestrians, and it was 
extracted from the 185,831 BSV images using PSPNet, an effective 
machine learning technique (Zhao et al., 2017). We employed PSPNet 
pretrained by Cityscape dataset which comprised more than 5000 
streetscape images with state-of-the-art pixel-level annotations across 50 
cities (Cordts et al., 2016) (Fig. 3). The GVI in each sampling point was 
measured as the average ratio of vegetation pixel of four BSV images in 
that sampling point. After a manual validation of 100 random BSV im
ages using Adobe Photoshop, the automated GVI calculation 

Fig. 2. Examples of labeled Baidu Street View images in which the frame colors correspond to various tree species.  
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demonstrated a high degree of accuracy and reliability (Pearson’s r =
0.94). Finally, we calculated the average GVI value of all sampling point 
within each grid as the eye-level GVI of that grid. 

NDVI was measured by the Landsat 8 remote-sensing imagery ac
quired from June 2019 (Xu, 2014). The equation of NDVI is shown as: 
NDVI = (NIR - Red) / (NIR + Red), where NIR and Red are spectral 
reflectance measurements acquired using near-infrared and red light, 
respectively. The range of NDVI value is from − 1.0–1.0; The closer the 
NDVI value reaches to 1.0 indicates a higher level of top-down urban 
greenery. 

3.4.2. Built environment features 
We measured potential walking-influencing built environment var

iables based on 5D framework, including density, diversity, destination 
accessibility, distance to transit and design (Y. Jiang et al., 2021). 
Density was calculated by building floor area and population density in 
each grid (Y. Yang et al., 2019). Population density data was obtained 
from Worldpop in 2018 (https://www.worldpop.org/), with a 100 ×
100 m resolution. Land-use mix was used to quantify land-use diversity 
(Y. Jiang et al., 2021). We calculated the entropy score of three land-use 

categories retrieved from Jinan municipal natural resources and plan
ning bureau (http://nrp.jinan.gov.cn/), including residence, commerce, 
and public service (Shannon, 1948). The equation of land-use mix is 
shown as: Land use mix = ( − 1)

∑

i
(diln(di))/ln(3), where di denotes the 

ratio of specify land use category of total land use. Distance to transit 
was measured as the quantity of bus stations within each grid (J. Wang 
and Cao, 2017). Destination accessibility was defined as the number of 
five types of POIs (i.e., public service POI, company POI, residential POI, 
commercial POI, and recreational POIs) in each grid (Chen et al., 2022). 
The POI data was retrieved from Gaode Map Service (http://lbs.amap. 
com). Design was measured by the number of street crossings (three 
streets and above), as well as the total road length in each grid (Cerin 
et al., 2017). Building floor area, road density, street intersections and 
bus stops were acquired from the OpenStreetMap in 2019 (https://www 
.openstreetmap.org/). We calculated all built environment factors using 
ArcGIS 10.6. 

Fig. 3. Using Baidu Street View (BSV) to process pedestrian count audit and to extract eye-level greenery (a) For each sampling point, there are four BSV images 
collected from front (0◦), right (90◦), back (180◦) and left (270◦) directions. (b) Automatic pedestrian volume detection via the pedestrian counting function of Baidu 
AI. (c) Using PSPNet algorithm to extract street greenery pixels for calculating green view index (GVI). 
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3.5. Statistical analysis 

Before conducting our analysis, we performed a Variance Inflation 
Factor (VIF) analysis among all independent variables to avoid collin
earity. The result demonstrated that all VIFs were less than 4, indicating 
that there was no serious multicollinearity issue in the model. 

First, we adopted ordinary least square (OLS) regression model to 
investigate the independent associations between pedestrian volume 
and street tree characteristics after controlling for the urban greenery 
and built environment covariates. The OLS model is defined as follows: 

y = Xβ+ ε (4)  

where y is the dependent variable, X is the independent variable(s), β is 
the coefficient associated with each independent variable., and ε is a 
vector of random error terms. 

To account for potential spatial autocorrelation among neighboring 
grids, we conducted a test on the residuals of the OLS model using the 
global Moran’s I (Fischer and Getis, 2010). The result indicated a sig
nificant spatial autocorrelation in pedestrian volume, with a Moran’s I 
value of 0.588. Therefore, two major spatial regression models, i.e., 
spatial lag model (SLM) and spatial error model (SEM), were considered 
(Anselin and Rey, 1991). SLM assumes that spatial dependence may be 
caused by the autocorrelation of the dependent variable, while SEM 
suggests that it is caused by the autocorrelation of the residuals (Anselin 
and Rey, 1991). 

A Lagrange multiplier (LM) pre-test was performed to determine the 
most suitable spatial regression model for pedestrian volume data 
(Anselin et al., 2010). The result of the LM pre-test was presented in  
Table 1. Lagrange Multiplier (lag), Robust LM (lag), and Lagrange 
Multiplier (error) were statistically significant. However, Robust LM 
(error) had a p-value of 0.860, indicating that it was not significant. 
Hence, SLM was more suitable than SEM in this study. SLM can be 
calculated as follows: 

y = ρWy +Xβ+ ε (5)  

where ρ denotes the parameter for spatial autocorrelation, and Wy 
represents a spatial weight matrix that accounts for the spatial lags of the 
dependent variables in neighboring units. The matrix was constructed 
using the Queen’s contiguity criterion, and the spatial regression anal
ysis was conducted using Geoda v.1.2 software. To fulfill the normality 
assumption and improve the distribution of pedestrian volume, a natural 
logarithmic transformation was applied to the dependent variable prior 
to conducting the statistical analysis. 

4. Results 

4.1. Tree species classification 

In the field of computer vision, object detection performance is often 
evaluated using the Average Precision (AP) metric. This metric assessed 
the agreement between the predicted and actual boundaries of objects, 
normalized by their combined area, thereby providing an equitable 
evaluation of precision and recall. In particular, our study employed the 
average AP score at a 0.5 Intersection over Union (IoU) threshold 

(mAP0.5) as the main performance measure, where IoU threshold per
tains to the degree of overlap between predicted and actual objects. 

We compared the efficacy of all current models which employed SVIs 
as the sole dataset to process tree species classification (Table 2). Our 
model achieved a higher mAP0.5 value of 0.587 than the models of 
Branson et al. (2018) and Choi et al. (2022), which attained mAP0.5 
values of 0.581 and 0.564, respectively. The results indicated that our 
model exhibited superior performance in the tree species classification 
task. 

We detected 144,596 street trees from a dataset of 185,831 Baidu 
Street View (BSV) images in Jinan, China. To validate the accuracy of 
our automatic detection method, we compared the findings to the 2007 
field survey conducted by the local landscape department (Jinan 
Landscape Bureau, 2007). Fig. 4 demonstrates that the amount of eight 
species in the present study aligned with the findings of the 2007 field 
audit. Locust tree, poplar and oriental plane dominated both tree clas
sification result and the field study in 2007. Besides, a number of pine 
trees and cypresses were detected in our study while there was no 
relevant data of these trees in 2007 field audit. Three main street tree 
indicators (i.e., tree abundance, species richness, and species mix) and 
urban greenery covariates (i.e., NDVI and green view index) were 
aggregated within the 800 m grid, and the results are presented in 
Fig. A1. 

4.2. Relationships between pedestrian volume and street trees indicators 

4.2.1. Descriptive statistics 
The descriptive statistics and correlation matrix of all variables (i.e., 

street tree characteristics and covariates) in a grid are shown in Table 3 
and Fig. A2. The average ratio of species richness, tree abundance and 
species mix for all grids were 6.13 (SD = 1.94), 167.17 (SD = 181.64) 
and 0.78 (SD = 0.38), respectively. Regarding the urban greenery 
characteristics, the average of GVI for all grids was 0.14 (SD = 0.07) and 
that of NDVI was 0.16 (SD = 0.04). 

In terms of built environment variables, the study area exhibited 
high population density (M = 691.84 /km2, SD = 436.73), with a large 
building floor area (M = 554124.41 m2, SD = 323571.84), a mixed land 
use (M = 0.72, SD = 0.32). Public transportation was also easily 
accessible (M = 3.06, SD = 2.79). Each grid had average of 5.49 street 
intersections (SD = 6.76) and 79017.69 m of average road length (SD =
26792.12), indicating a well-connected street network. In terms of 
accessibility of pedestrian facilities, there are more public service, 
company and commercial POIs than residence and recreational POI. 

The results of two multivariate models associating pedestrian vol
ume and street tree characteristics were shown in Table 4. SLM had a 
better model goodness-of-fit (i.e., higher Log likelihood (LL) and R- 
squared, lower Akaike info criterion (AIC) and Schwarz criterion (SC)) 
than OLS model, thus we primarily followed the SLM results. For street 
tree characteristics, street trees abundance and species mix had positive 
association with pedestrian volume. Species richness, however, had not. 

For the urban greenery variables, the eye-level greenery, GVI, was 
positively associated with pedestrian volume. The overhead level 
greenery (i.e., NDVI), however, was negatively associated with pedes
trian volume. Among the built environment covariates, population 
density, land-use mix, public service POI, and commercial POI were 
positively associated with pedestrian volume. The SLM model achieved 
an R2 value of 0.774, demonstrating that it can explain 77.4% of the Table 1 

Lagrange multiplier (LM) diagnostics for spatial dependence.  

Dependent variable Statistic DF Value p-value 

Pedestrian volume Lagrange Multiplier (lag)  1  84.375 ＜0.001*** 
Robust LM (lag)  1  45.498 ＜0.001*** 
Lagrange Multiplier (error)  1  38.908 ＜0.001*** 
Robust LM (error)  1  0.031 0.860 

Note: DF = Degrees of freedom; LM = Lagrange multiplier; *p < 0.05. **p <
0.01. ***p < 0.001. 

Table 2 
Performance evaluation of all existing tree classification models employing SVIs 
as sole dataset.  

Study Model performance (mAP0.5) Study area 

Choi et al., 2022  0.564 Seoul, South Korea 
Branson et al., 2018  0.581 Pasadena, United States 
Our model  0.587 Jinan, China  
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variation in pedestrian flow within the study area. 

4.3. Comparison between abundance and species mix of street trees 

According to the results of SLM (Section 4.2), both street tree 
numbers and species mix had positive associations with pedestrian 
volume. Therefore, it is advisable to consider both numbers and species 
mix of street tree during urban street-tree layout planning. Hence, we try 
to find out the spatial distribution of both street trees abundance and 
species mix. We divided the grids into high/low tree abundance and 
high/low species mix based on the corresponding median values 
(Fig. 5). All grids were divided into four categories (Fig. 6), i.e., grids 
with high tree abundance and high species mix (H/H); grids with high 
tree abundance and low species mix (H/L); grids with low tree abun
dance and high species mix (L/H) and grids with low tree abundance and 
low species mix (L/L). 

As seen in Fig. 6, spatial disparities existed in the four categories of 
grids. The H/H grids was mainly located in the central old town and the 
core area of the new town in the southeast. H/L grids was mainly 
distributed in the northwestern and northeastern urban sub-centers; L/H 
grids was located in the northeastern towns and villages, while small 
part of the L/H grids was distributed on the fringes of H/H areas. The 
grids for L/L were situated in the suburban areas, mainly in the south
west of the study area. In general, apart from H/H areas, the other areas 

were lacking in the abundance of street trees or in the species mix, or 
both. 

5. Discussion 

Previous studies have demonstrated the positive impact of street 
greenery, especially street trees, on physical activity among urban res
idents. Optimizing the design of street trees to facilitate an active life
style, could yield significant public health benefits. However, most 
existing studies have primarily focused on the quantity rather than the 
quality of street greenery. There is an urgent need to assess the quality of 
street trees, because previous studies also confirm its role on physical 
activity and human perception. To address such research gap, we 
innovatively assessed both the abundance and species diversity of street 
trees from freely available Street View images. Using 185,831 Baidu 
Street View images from Jinan, China, we further examined the asso
ciation between pedestrian volume and street tree characteristics. In 
general, this study extended prior studies in two respects. 

First, at the methodological front, the present study provides a cost- 
effective method to assess fine-grained street tree information at any 
spatial scale. Both quantitative (i.e., tree abundance) and qualitative (i. 
e., species richness and diversity mix) features of street trees of any place 
with Street View image coverage can be obtained. The present method 
offered the merits of high precision, cost-effectiveness and large 
geographic reach over the traditional field audit. It can collect citywide 
data of street tree species with geographic information in a rapid 
manner. Such a method can advance the research field in urban tree 
management, healthy cities, and urban ecology. 

Second, our study pinpoints the positive effects of both abundance 
and species mix of street trees on pedestrian volume after adjusting other 
covariates. To the best of our knowledge, it is the first study confirming 
the positive link between species diversity of street trees and collective 
walking behavior at a citywide scale. The large spatial coverage ensures 
that our results are reliable and generalizable to the entire Jinan 
population. 

5.1. Major Findings 

This study yielded three major findings. First, street-trees abundance 
was positively associated with pedestrian volume, which supplemented 
previous findings that the level of street greenery can promote active 
travel (Y. Lu et al., 2018; Sarkar et al., 2015). Street tree abundance 
could reflect the potential quantity of street greenery, since more street 
trees could furnish pedestrians with a pleasant walking environment 
(Lee et al., 2016). The positive effects of high GVI on population-level 
walking have also been reported in both our study and prior evidence 

Fig. 4. The street tree detection result of our study vs. 2007 field audit of street tree distribution.  

Table 3 
Descriptive statistics for all indicators within Central Jinan, China, sampled in 
2018–2019 (Fishnet = 800 × 800 m, N =395).  

Variables (unit) Mean SD 

Street tree characteristics     
Species richness (N)  6.13  1.94 
Tree abundance (N)  167.17  181.64 
Species mix  0.78  0.38 
Urban greenery characteristics     
Greenery view index (GVI)  0.14  0.07 
Normalized Difference Vegetation Index (NDVI)  0.16  0.04 
Built environment characteristics     
Population density (N /km2)  691.84  436.73 
Building floor area (m2)  554124.41  323571.84 
Land-use mix  0.72  0.32 
Number of bus stops (N)  3.06  2.79 
Street intersection (N)  5.49  6.76 
Road density (m)  79017.69  26792.12 
Public service POI (N)  51.56  56.78 
Company POI (N)  56.02  63.44 
Residential POI (N)  9.82  9.40 
Commercial POI (N)  43.37  48.32 
Recreational POI (N)  8.80  10.39  
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(Yi Lu, 2019; Y. Yang et al., 2019). Besides, street trees effectively create 
a comfortable walking microclimate (e.g., reducing noise, enhancing air 
quality and improving heat perception) to achieve a pleasant walking 
experience (Coutts et al., 2016). 

Second, tree species mix instead of species richness had a positive 
association with pedestrian volume, demonstrating an independent ef
fect of the greenery quality on collective walking behavior. A commu
nity with diverse tree species could provide various ecosystem services 
such as esthetics, biodiversity, and microclimate (Clarke et al., 2013; 
Coutts et al., 2016). The species mix of street trees might facilitate col
lective walking behavior via three mechanisms: (a) by providing 

aesthetic appeal, enhancing street quality perception (Y. Lu et al., 2018; 
Weber, 2014), (b) by improving noise reduction, air purification, and 
other ecological services (Amini Parsa et al., 2019; H. N. Li et al., 2010) 
(c) by creating a more natural ecological environment, reducing stress 
and improving mental health (Łaszkiewicz and Sikorska, 2020; Wei 
et al., 2023). Specifically, prior evidence indicated that highly diverse 
tree species efficaciously enhanced the overall perceived aesthetics and 
street built environment quality, which has been considered as an 
indispensable element of walkability and urban vibrancy (Saelens and 
Handy, 2008). High species mix on streets can also lead to better 
biodiversity (Leidinger et al., 2021), which benefits the ecological 
environment of the street, such as better air quality and lower noise 
levels. Numerous studies have shown that a positive correlation existed 
between the street eco-environmental level and the duration of resi
dents’ daily physical activity (An et al., 2019; Foraster et al., 2016). By 
providing a more ecologically sustainable street landscape, the overall 
walking experience of the street can be effectively enhanced. Further
more, urban greenery, especially diverse green spaces was proven to be 
related to reducing physiological stress (Remme et al., 2021) and 
recovering from attention fatigue (Engemann et al., 2019); for example, 
individuals tend to immerse themselves in a leisurely stroll through a 
green space replete with a variety of flora to reinvigorate their senses (S. 
Liu and Wang, 2021; Wu et al., 2023). 

Third, we noticed that some urban greenery and built environment 
covariates played vital roles in pedestrian volume. GVI had a positive 
association with pedestrian volume, while NDVI had a negative associ
ation. The results are inconsistent with prior evidence (Y. Jiang et al., 
2021; Mouratidis and Poortinga, 2020). Such inconsistency might relate 
to the spatial mismatch of two greenery measures. The top-down 
greenery cover assessed by NDVI is not equal to the eye-level greenery 
assessed by GVI, and the latter may better present what pedestrians can 
perceive when walking on streets (Ye et al., 2019). Regarding the built 
environment covariates, population density had a positive association 
with pedestrian volume. An area with a high population density might 
stimulate more street activities at population level, because of the po
tential high pedestrian supply. Our study confirmed that mixed land-use 
can lead to an increase in pedestrian flow (Chen et al., 2022; Yi Lu et al., 
2017). Diverse land use was proven to have beneficial effects in 

Table 4 
Results of regression models of pedestrian volume, street tree characteristics, and other covariates (Fishnet = 800 × 800 m, N =395).  

Model predictors OLS SLM 

Coef. (SE) p-value Coef. (SE) p-value 

Street tree characteristics       
Species richness  -0.041 (0.019) 0.037*  -0.025 (0.017) 0.142 
Tree abundance  0.000 (0.000) ＜0.001***  0.001 (0.000) ＜0.001*** 
Species mix  0.286 (0.089) 0.001**  0.180 (0.077) 0.019* 
Urban greenery       
GVI  0.852 (0.320) 0.008**  0.549 (0.287) 0.048* 
NDVI  -1.445 (0.551) 0.009**  -1.107 (0.477) 0.020* 
Built environment       
Population density  0.002 (0.000) ＜0.001***  0.001 (0.000) 0.001** 
Building floor area  -0.000 (0.000) 0.952  -0.000 (0.000) 0.477 
Land-use mix  0.201 (0.072) 0.006**  0.147 (0.062) 0.018* 
Street intersection  0.007 (0.004) 0.067  0.000 (0.003) 0.847 
Road density  0.000 (0.000) 0.029  0.000 (0.000) 0.932 
Number of bus stops  0.009 (0.008) 0.248  0.006 (0.007) 0.364 
Public service POI  0.003 (0.001) ＜0.001***  0.002 (0.001) ＜0.001*** 
Company POI  0.000 (0.000) 0.257  0.000 (0.000) 0.424 
Residential POI  0.008 (0.003) 0.033*  -0.000 (0.003) 0.975 
Commercial POI  0.003 (0.001) 0.004**  0.003 (0.001) 0.001** 
Recreational POI  -0.002 (0.003) 0.439  -0.002 (0.003) 0.346 
Log likelihood (LL)  -151.925   -111.796  
Akaike info criterion (AIC)  337.85   259.593  
Schwarz criterion (SC)  405.448   331.167  
R-squared  0.711   0.774  

Note: Coef. = Coefficient; SE = Standard error; GVI = green view index; NDVI = Normalized Difference Vegetation Index; POI = point of interest; *p < 0.05; **p <
0.01; ***p < 0.001. 

Fig. 5. Grids with a) high/low street tree abundance, and b) high/low spe
cies mix. 
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lessening travel distance and encouraging both leisure and utilitarian 
walking behaviors (Chen et al., 2022; Saelens and Handy, 2008). 

Fourth, our study revealed significant spatial disparities of street 
trees in urban areas. We observed that areas with a higher tree abun
dance do not necessarily have a high level of species mix, and vice versa. 
To better understand these disparities, we classified all grids into four 
distinct clusters based on a combination of street tree abundance and 
species mix. These clusters offered unique insights into the urban 
development and street tree planting characteristics of different areas. 
For example, the H/H cluster, located in old town areas, boasted a well- 
established street tree system with both high tree abundance and tree 
species mix. In contrast, the H/L cluster, situated in new towns or urban 
renewal areas, prioritized tree abundance over quality to achieve a 
desirable level of street greenery. The L/H cluster, primarily comprising 
urban peripheral areas, struggled with a lack of street trees despite a 
diverse natural environment. Furthermore, the L/L cluster, consisting of 
farming and industrial areas, had poor street greenery in terms of both 
tree quality and quantity. Our study highlights the importance of 
considering the unique characteristics of each cluster when undertaking 
any urban renewal efforts. Simply increasing tree abundance may not be 
the most effective way to promote biodiversity or collective walking. 
Instead, we recommend a more nuanced approach that considers the 
specific needs and challenges of each cluster to achieve optimal street 
greenery and sustainable urban development. In addition, the above
mentioned spatial disparities could identify the spatial inequalities of 
street trees in a high urban density context in Asia, which supplement 
previous evidence found in the low or medium urban density context of 
North America (Lin et al., 2021). 

5.2. Planning implications 

Our findings have several planning and tree management implica
tions. Firstly, a pedestrian-friendly greening environment requires not 
only abundant trees, but also diverse tree species (Tsai et al., 2019). 
Hence, urban forestry sectors and landscape architects might establish 
tailored strategies to enhance street greening for the four clusters listed 
in Section 4.3 respectively (Morgenroth et al., 2016). These strategies 
should account for the varying levels of tree abundance and species 
diversity within each cluster, aiming to enhance street greening in a 
manner that addresses the specific needs of each area. 

Secondly, it may be beneficial to broaden the focus beyond global 
parameters of urban greenness (e.g., NDVI) and individual greenness 
visibility (e.g., GVI) to include more detailed aspects of street tree ex
posures, including species diversity and tree counts (Morgenroth et al., 
2016). Our advice is by switching appropriate attention to the latter, we 
can not only enhance urban forest biodiversity but also improve street 
walkability, and thus help create a healthy and vibrant urban 

environment. 
Thirdly, by focusing on the detailed aspects of street tree exposures, 

urban forestry plans can greatly promote biodiversity within urban 
ecosystems (J. Liu and Slik, 2022). Relevant policies should encourage 
the planting of a diverse array of street tree species, especially in areas 
with high resident exposure to greenery. This diversity can not only 
enhance the aesthetic and ecological value of urban areas but also 
support a variety of ecosystem services that benefit urban residents. 

Furthermore, the implementation of the abovementioned planning 
implications requires the collaboration of multiple stakeholders, 
including urban planners, landscape architects, environmental scien
tists, public health professionals, and the community. Engaging local 
residents in the planning and management of urban greenery can ensure 
that initiatives are responsive to the needs and values of the community, 
thereby enhancing the success and sustainability of urban forestry ef
forts. In summary, by adopting a holistic and nuanced approach to urban 
greening, cities can foster environments that support active lifestyles, 
ecological resilience, and community well-being. 

6. Limitations 

This study has some limitations. First, the cross-sectional study 
design could not establish the causal relationship between pedestrian 
volume and street tree characteristics. Future studies should adopt the 
natural experimental or quasi-natural experimental methods to acquire 
more robust findings. 

Second, although the pedestrian volume and street tree character
istics were measured at a street segment level, we aggregated these 
parameters as well as other covariates at an 800 m grid level. This ag
gregation, to some degree, may lead to two limitations, i.e., ecological 
fallacy and omitted individual factors such as a pedestrian’s age, gender, 
and income (Kwan, 2018). However, our decision to conduct our anal
ysis at the grid level is based on two considerations. Firstly, grid-level 
analysis enabled more effective integration of existing data resources, 
considering their availability and accuracy. Secondly, grid-level analysis 
also helped mitigate the small-scale variability and noise in street 
segment level data, thereby enhancing the robustness of our research 
results. For example, the pedestrian volume of a street segment can 
fluctuate significantly over time. By aggregating the pedestrian volume 
of multiple street segments in a grid, we were able to provide a reliable 
and standardized method for analyzing pedestrian volume. 

Third, as the primary data source of this study, the BSV images were 
collected at different time periods (peak hours vs. off-peak hours), 
different days (weekdays vs. weekends), and different seasons, which 
may affect the results of pedestrian detection and tree species classifi
cation (Chen et al., 2022; D. Liu et al., 2023). We selected all BSV images 
collected in spring and summer to achieve optimal species identification 

Fig. 6. Classification of the study area into four categories, according to the tree abundance and species mix outcomes.  
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accuracy. Further studies are needed to mitigate the bias arising from 
temporal fluctuation. 

Furthermore, this study prioritized the identification of street trees 
within street view imagery. However, it is important to acknowledge 
that our study did not extend to other forms of urban greenery such as 
shrubs, grasslands, and vertical green structures. These elements have 
been shown to impact physical activity as well (Spano et al., 2021). 
Future research could focus on these elements to provide a more 
comprehensive assessment of urban greening. 

7. Conclusion 

This study has offered new insights into the relationship between 
street tree characteristics and pedestrian volume at a city scale. All street 
tree characteristics were retrieved using a novel deep learning method in 
conjunction with street view images. The spatial lag model denoted that 
pedestrian volume was positively associated with both abundance and 
species mix of street trees. The finding sheds new light on our knowledge 
of the interaction between walking behavior and street trees. Further
more, we highlighted the citywide spatial mismatch between the 
abundance and species mix of street trees, which will assist the relevant 
authorities in developing tailored street tree planting strategies. 
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Fig. A1. The results of street tree indicators and urban greenery covariate aggregated by the 800 m grid in Central Jinan, China (Fishnet = 800 × 800 m, N = 395); 
(a) street-trees abundance; (b) species richness of street tree; (c) street-trees species mix; (d) green view index; (e) NDVI. 

Fig. A2. Correlation of all variables including street tree indices, urban greenery covariates and built environment covariates aggregated by 800 m grid in Central 
Jinan, China (Fishnet = 800 × 800 m, N = 395). 

Y. Jiang et al.                                                                                                                                                                                                                                    



Urban Forestry & Urban Greening 95 (2024) 128294

13

References 

Akpinar, A., 2016. How is quality of urban green spaces associated with physical activity 
and health? Urban For. Urban Green. 16, 76–83. https://doi.org/10.1016/j. 
ufug.2016.01.011. 

Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., 
Farhan, L., 2021. Review of deep learning: concepts, CNN architectures, challenges, 
applications, future directions. J. Big Data 8 (1), 53. https://doi.org/10.1186/ 
s40537-021-00444-8. 

Amini Parsa, V., Salehi, E., Yavari, A.R., van Bodegom, P.M., 2019. Analyzing temporal 
changes in urban forest structure and the effect on air quality improvement. Sustain. 
Cities Soc. 48, 101548 https://doi.org/10.1016/j.scs.2019.101548. 

Amiri, N., Heurich, M., Krzystek, P., Skidmore, A., 2018. Feature relevance assessment of 
multispectral airborne lidar data for tree species classification. Int. Arch. 
Photogramm., Remote Sens. Spat. Inf. Sci. 42 (3). 

An, R., Shen, J., Ying, B., Tainio, M., Andersen, Z.J., de Nazelle, A., 2019. Impact of 
ambient air pollution on physical activity and sedentary behavior in China: a 
systematic review. Environ. Res. 176, 108545 https://doi.org/10.1016/j. 
envres.2019.108545. 

Anselin, L., Rey, S., 1991. Properties of tests for spatial dependence in linear regression 
models. Geogr. Anal. 23 (2), 112–131. 

Anselin, L., Syabri, I., Kho, Y., 2010. GeoDa: An introduction to spatial data analysis. In: 
Anselin, L., Syabri, I., Kho, Y. (Eds.), Handbook of applied spatial analysis. Springer, 
pp. 73–89. 
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