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A B S T R A C T   

Trees in urban areas have diverse ecological, social, and health benefits. The establishment of up-to-date and 
accurate street-tree inventories that list the species and locations of individual street trees is critical to urban tree 
management and tree-planting campaigns. However, street-tree inventories are incomplete or lacking altogether 
in most cities. This is partly because conventional field assessment is laborious or expensive. In this study, we 
developed and validated a novel and cost-effective method to establish a city-wide tree inventory based on 
computer vision and freely available street view images (SVIs). Tree information such as species, height, crown 
diameter, and geographical coordinates at the individual tree level can be assessed. Based on an object detection 
model, we adopted a species-based loss function to address the challenges of long-tailed class distribution of 
species, which is caused by imbalance among sample size of different tree species and can lead to poor per
formance of the model. Compared with other research in urban tree species recognition, the modified model 
shows a higher accuracy. In order to calculate quantitative features of street trees, we employed a deep learning 
algorithm, which is pretrained on stereo dataset and validated on Google Street View images, to estimate the 
depth of each pixel in SVIs. Furthermore, as a demonstration, we established the citywide tree inventory and 
conducted tree diversity analysis for Jinan, China. Compared with new developed area, the old town has more 
street trees and more diverse tree species which can improve biodiversity and walkability. We also found that 
plane trees, which can cause allergic reactions, are dominant in northern new developed urban area.   

1. Introduction 

1.1. Significance of street trees and street tree inventory 

Urban street trees are recognized as indispensable elements in cities 
(Benninger, 2002; Ellis, 2002; Schuyler, 1986) and benefit people and 
our environment in multiple aspects (Johnson, 2006). Planting and 
maintaining street trees brings not only direct benefits such as comfort 
(Lu, Sarkar, & Xiao, 2018; Y. Yang et al., 2019), shade (Chen et al., 
2019), aesthetics (Pauleit, 2003), and better air quality (Grundström & 
Pleijel, 2014; McDonald et al., 2007) but also indirect benefits, e.g., 
social and cultural values (Wolf et al., 2020) and mental and physical 
health (Nehme, Oluyomi, Calise, & Kohl III, 2016; Pataki et al., 2021; 
Ulmer et al., 2016; Wolf et al., 2020). However, rapid global urbaniza
tion and increasing urban populations have become a threat to urban 
ecology and are leading to a decline in urban street trees (McKinney, 

2002; Savard, Clergeau, & Mennechez, 2000). 
The benefits of urban trees vary across various sizes, species, loca

tions and other individual parameters of the trees (Escobedo, Kroeger, & 
Wagner, 2011; Escobedo & Nowak, 2009). For example, different tree 
species have different capabilities to mitigate air pollution and the 
greenhouse effect (Gillner, Vogt, Tharang, Dettmann, & Roloff, 2015). 
Different species of trees are also associated with different species of 
birds, small mammals and pests, which are important to biodiversity and 
the maintenance of urban ecological systems (Raupp, Cumming, & 
Raupp, 2006; Watson & Adams, 2010). Therefore, it is necessary to 
quantify individual parameters of the trees rather than just focusing on 
their numbers. 

An accurate and timely updated tree inventory containing individual 
tree-level parameters is also critical for sustainable urban development 
and planning for three reasons (D. Li, Ke, Gong, & Li, 2015; Pu & Landry, 
2012). First, it provides indispensable information for urban greenery 
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management and planning activities, such as risk management, land
scape planning, precious and ancient tree protection, and pest and dis
ease prevention (Song, He, & Zhang, 2019; Xiao, Ustin, & McPherson, 
2004). Second, it can be a valuable data source for researchers from 
multiple subjects, such as biology, environmental science, urban studies 
and even economics (Nielsen, Östberg, & Delshammar, 2014). Among 
these subjects, individual and collective tree information such as spe
cies, sizes and amounts can be used to evaluate ecosystem service, 
biomass and carbon stock, climate change, and their impacts on human 
behaviors (McPherson et al., 1997; D. J. Nowak, Crane, & Stevens, 2006; 
Sjöman, Östberg, & Bühler, 2012). Third, a transparent and publicly 
accessible tree inventory can promote public interest and engagement in 
tree planting and preservation (Alpan & Sekeroglu, 2020). Existing 
studies highlighted the importance of bringing citizen science into the 
process of tree inventory, which means that the public can participate in 
the process of creating and maintaining tree inventory by providing 
timely information on individual trees (Roman et al., 2017). 

1.2. Methods used to collect data for tree assessment 

There are four common approaches to conduct urban street trees 
assessment, including questionnaires, field audits, using cameras and 
advanced sensors, and citizen science. Different approaches have 
different levels of precision and cost, time, and labor consumption 
(Fassnacht et al., 2016). Questionnaires usually collect information 
through local institutions or local residents, which is cost-efficient but 
less accurate (Ewald, 2001; Schaminée, Hennekens, Chytry, & Rodwell, 
2009). Field audits, which are usually conducted by botanists or trained 
staff (Martin, 2011) and directly examine each part of a tree, such as its 
leaves, flowers, trunk, and fruit (Wäldchen & Mäder, 2018), are labo
rious and time-consuming but are more accurate, robust and complete. 

Benefiting from the advanced algorithms and computational power, 
the dataset collected via cameras and sensors such as LiDAR are now 
popular in automatic tree assessment (M. Li & Yao, 2020; Lu, 2019; 
Nielsen et al., 2014) and has shown potential in tree species identifi
cation (Song et al., 2019; Sothe et al., 2019; Wäldchen & Mäder, 2018). 
Due to its high accuracy and feasibility, LiDAR (Bauwens, Bartholomeus, 
Calders, & Lejeune, 2016, 2016; Sankey, Donager, McVay, & Sankey, 
2017), hyperspectral camera (Anderson et al., 2008; Sankey et al., 2017; 
Sothe et al., 2019) and other advanced sensors (Abdollahnejad & Pan
agiotidis, 2020; Amiri, Heurich, Krzystek, & Skidmore, 2018; Leckie 
et al., 2003) have been applied in forestry inventory studies widely. 

However, considering about cost-effectiveness, normal RGB camera 
(Branson et al., 2018; Culman, Delalieux, & Van Tricht, 2020) is still the 
most affordable sensors for collecting data for large-scale tree assess
ment in urban environment. These cameras can be satellite-based, 
aerial-based or terrestrial-based. Satellite data are suitable for large- 
scale tree assessment (Ryherd & Woodcock, 1990) and identify trees 
based on the spectral radiance and surface reflectance from different 
species of trees. However, this approach can only provide images from 
one angle and the resolution is relatively low. Aerial-based sensors, 
especially via unmanned aerial vehicles (UAV), have unique advantages 
over satellite-based sensors because of high resolution, cost-efficiency 
and flexibleness (Colomina & Molina, 2014; Dandois, Olano, & Ellis, 
2015; Jaakkola et al., 2010; Sankey et al., 2017; Sothe et al., 2019; 
Torresan et al., 2017). However, it is extremely time, labor-consuming 
to conduct city-wide assessment. Terrestrial-based data (Bauwens 
et al., 2016; Liang et al., 2016; Y. Lin & Herold, 2016) also attracted 
attention for their high-resolution capability, feasibility, and an 
approximate human perspective. Terrestrial vehicles can also access 
urban areas where UAVs and other aircraft are restricted. Researchers 
can obtain terrestrial tree data by using sensors on ground vehicles, such 
as terrestrial laser scanning (TLS) (Liang et al., 2016). They can also 
obtain freely available street view images (SVIs) from online mapping 
servers such as Google and Baidu (Branson et al., 2018). As a publicly 
accessible resource, the acquisition of SVIs does not require any priority 

investments in equipment or labor cost. SVIs therefore have enormous 
potential for use in assessing street trees. Indeed, one study reported 
93% agreement between trees identified in field audits and those iden
tified in SVI audits (Berland & Lange, 2017). 

Utilizing crowd-sourced data and public participation, citizen sci
ence is also increasingly used for urban street tree data collection 
especially in cities or communities lacking of resources and labors to 
conduct inventories (Crown, Greer, Gift, & Watt, 2018; Hauer et al., 
2018). This approach is widely used in tree assessment including species 
recognition (Bancks, North, & Johnson, 2018; Bloniarz, 1996; Roman 
et al., 2017) and quantitative feature measurement (Bancks et al., 2018). 
Compared with expert audit, citizen science is low-cost and flexible, 
which can also be combined with other data sources such as SVIs 
(Berland, Roman, & Vogt, 2019). Some recent research has confirmed 
the accuracy and feasibility of citizen science in collecting urban tree 
information (Bancks et al., 2018; Bloniarz, 1996; Cozad, McPherson, & 
Harding, 2006; Roman et al., 2017). 

1.3. Machine learning application on tree classification 

There has been increasing interest in using machine learning tech
niques to classify tree species. Combining machine-learning techniques 
with various data sources creates opportunities for the large-scale 
automated classification of tree species (Colomina & Molina, 2014; 
Nielsen et al., 2014). The early researchers employed traditional ma
chine learning methods, including k-nearest neighbors (K− NN) (Prasad, 
Peddoju, & Ghosh, 2013), random forest (RF) (Caglayan, Guclu, & Can, 
2013) and support vector machine (SVM) (X.-M. Ren, Wang, & Zhao, 
2012), to classify trees based on single or multiple pre-specified features 
which extracted manually. 

In order to fully automatically classify tree species, advanced ma
chine learning techniques such as deep learning-based computer vision 
techniques are introduced (LeCun, Bengio, & Hinton, 2015). These ap
proaches can automatically extract features from imagery and classify 
them based on the feature map. Recent advancements in deep learning 
algorithm and computational power made it feasible to assess urban 
street trees with both RGB images and imagery collected with advanced 
sensors such as LiDAR. For instance, convolutional neural network 
(CNN), has been widely applied to detect and classify trees on satellite- 
based and aerial-based imagery (Ardila, Bijker, Tolpekin, & Stein, 2012; 
Balková, Bajer, Patočka, & Mikita, 2020; Pu, Landry, & Yu, 2018; San
key et al., 2017; Schiefer et al., 2020). Also, two studies employed this 
approach on SVIs and other terrestrial-based images to assess urban 
vegetation, which focused on plants in home gardens and farmland, and 
achieved a 0.553 mean average precision (mAP) for seven tree species 
(Ringland, Bohm, & Baek, 2019; Ringland, Bohm, Baek, & Eichhorn, 
2021). 

Challenges such as backlighting, blocking issues, and varied view
point and object scales (Fig. 1) can lead to a high intra-class variance, 
while the similar shapes and colors can lead to a low inter-class variance. 
This can pose threat on the efficiency of the models. Therefore, more 
advanced and specified algorithms with sufficient and high-quality 
labeled dataset are necessary for training a fine-grained object detec
tion model. 

1.4. Fine-grained object detection models 

Most object detection models focus on detecting objects that differ 
significantly with others, such as detecting vehicles, pedestrian and trees 
on the street. Fine-grained object detection tasks, which require local
izing and classifying similar objects into more specific classes, can be 
challenging. 

Region based Convolutional Neural Network (R-CNN) models 
(including R-CNN (Girshick, Donahue, Darrell, & Malik, 2015), Fast R- 
CNN (Girshick, 2015) Faster R-CNN (S. Ren, He, Girshick, & Sun, 2015)) 
and You Only Look Once (YOLO) (Redmon, Divvala, Girshick, & 
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Farhadi, 2016) are two common series of models for fine-grained object 
detection. R-CNN divide object detection task into localization step and 
classification step. Using a region proposal algorithm, the models extract 
the most possible object locations and pass them to the classifier. Based 
on R-CNN, Fast R-CNN adds region of interest (ROI) pooling layer before 
the fully connected layer to reduce the processing time. Faster R-CNN 
employs a Region Proposal Network (RPN) to generate ROI, which 
achieves a 250 times improvement over R-CNN and 10 times improve
ment over Fast R-CNN. 

Different from R-CNN series, YOLO (Redmon et al., 2016) divides 
image into G*G grids (the number of columns and rows are same) and 
detects objects in all the grids in one step. This straightforward pipeline 
improves the training efficiency significantly compared with R-CNN 
series and makes it possible for real time detection. This series is 
evolving and has released seven versions (from YOLOv2 to YOLOv7) 
until now. 

1.5. Quantitative measurement by computer vision techniques 

Estimating the object size is one fundamental task in computer 
vision. There are mainly three ways to measure object size from 2D 
pictures. One is geometric approaches (Benosman, Manière, & Devars, 
1996; Mancini et al., 2013; Mur-Artal, Montiel, & Tardos, 2015; Zou & 
Li, 2010) which extract information of an object from multiple images 
containing the same object based on geometric constraints. Although 
these methods are accurate and efficient, they require one object appear 
in a series of images which is unfeasible when images are not abundant. 

Another approach is to use advanced sensors such as LiDAR, which 
obtains the depth from object to the sensor and calculate other quanti
tative features based on this depth. These sensors are widely used in 
construction, robotic, unmanned driving and forestry industry. Google 
also has used LiDAR to provide depth images for their SVIs. However, 
these sensors are expensive and data processing is time-consuming, so 
are difficult to be applied in low-cost industries. 

Recently, with the development of computer vision technology and 
the prevalence of consumer-grade monocular cameras, computer sci
entists have focused on estimate distance on single view images with 
deep learning methods, which is inspired by animals who can estimate 
distance based on their prior experience. Various algorithms with 
promising results were developed (Aleotti, Tosi, Poggi, & Mattoccia, 
2018; Chakravarty, Narayanan, & Roussel, 2019; Garg, Bg, Carneiro, & 
Reid, 2016; Wang, Pizer, & Frahm, 2019). 

1.6. Critical research gaps 

To date, the importance of tree inventory has been underestimated 
by the public and some authorities, and only a few cities worldwide have 
completed citywide street tree inventories since large-scale tree assess
ments are expensive and laborious. The applications of computer vision 
techniques and SVIs can automatically assess trees in large scale with 
low cost. Some studies have already applied SVIs to obtain quantitative 

features and species of street trees through deep learning techniques 
(Branson et al., 2018; Choi et al., 2022; Kang, Lee, & Zou, 2021; Laumer 
et al., 2020; M. Li & Yao, 2020; W. Wang et al., 2018). However, all 
studies using Google Street View (GSV) where researchers can access 
depth information from corresponding depth imagery. For countries and 
regions without GSV, such as mainland China, street view images from 
other platforms such as Baidu and Tencent do not have publicly access to 
such depth imagery. In addition, several challenges of fine-grained ob
ject detection in SVIs can undermine the efficiency of their classifiers, 
such as high intra-variance and low inter-variance of street tree species 
and long-tailed distribution problems. 

In this study, we propose a fine-grained object detection model to 
assess citywide street trees from freely available SVIs without depth 
imagery. This method can assess not only quantitative parameters such 
as geographic coordinates, canopy and trunk diameters and height but 
also qualitative attributes such as species for each street tree in a city. 

To estimate depth from single view SVI, we employed Monodepth2 
(Godard, Mac Aodha, Firman, & Brostow, 2019), a novel deep learning 
model which can estimate 3D information based on 2D pictures. This 
model is pretrained in KITTI stereo dataset (Geiger, Lenz, Stiller, & 
Urtasun, 2013) which contains stereo imagery in the scenes of urban 
streets. The depth assessing method was validated with depth map in 
Google SVIs. To deal with high intra-variance and low inter-variance, we 
presented a new muti-category dataset based on SVIs which aimed at 
urban street tree detection and fine-grained classification. Considering 
the long-tailed distribution challenge, we also modified the loss function 
of YOLOv5 to improve the performance. 

Using our proposed method, street tree inventory was established for 
the urban area of Jinan, China. Based on street tree inventory, some 
spatial analyses were conducted. We found that new development area 
has lower tree density and species richness compared with old town. A 
large part of new developed area is dominated by oriental plane trees 
which can pose allergy threat on citizens' health and the walkability of 
streets. Government is suggested to added more tree species to new 
developed area and replaced plane tree with other species. 

2. Methodology 

2.1. Study area 

Jinan, a medium-sized provincial capital city, is representative of 
many urban areas in northern China. Jinan had a population of 9.20 
million in 2020, and 3.76 million residents were living in inner city 
areas, including five districts: Lixia, Shizhong, Huaiyin, Tianqiao and 
part of Licheng (China National Bureau of Statistics, 2020). In this study, 
the study area is limited to these five urban districts, with a total area of 
258.27 km2 (Fig. 2) (China National Bureau of Statistics, 2020). Jinan 
has a continental monsoon climate with broad-leaved deciduous urban 
trees. The most common street trees in Jinan city are oriental plane, 
poplar, willow, locust tree, cypress, boxwood, wax tree and pine, which 
account for >90% of the whole street tree inventory (Jinan Forestry 

Fig. 1. Examples of object detection challenges in SVIs: (a) backlighting, (b) obstructions by other objects, (c) varied object scales.  
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Fig. 2. The inner city of Jinan, China was selected as the study area. All street segments with SVIs were selected. The darker color means where more street trees 
were detected. 

Fig. 3. The process flow of establishing a citywide street tree inventory from SVIs, which involves three steps: 1) collecting SVIs, 2) extracting tree information, and 
3) establishing tree inventory. 
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Bureau, 2007) Therefore, these eight species are chosen as the tested 
tree species in our study. 

2.2. Overall workflow 

In this study, we developed and validated an improved method to 
automatically establish a city-wide tree inventory using SVIs and com
puter vision (Fig. 3). The workflow includes three steps: 1) collecting 
SVIs, 2) extracting tree information, and 3) establishing a tree inventory 
(Fig. 3). 

2.2.1. Collecting SVIs 
Baidu Street View and Tencent Street View are the two most popular 

SVI providers in China. Tencent SVIs provide only one image for each 
shotting point without a timeline, so we cannot ensure that all SVIs 
collected for tree inventory are in the same season. Therefore, this study 
chose Baidu Street View as the data source, which provides SVIs at 
multiple times and different seasons for each shotting point. All SVIs 
used for the tree inventory are shotted between March and August. The 
SVIs of the whole inner city were retrieved from the Baidu Street View 
API (Baidu, 2021). First, we constructed the street network of the study 
area with data provided by the local government in 2021 (Jinan City 
Planning Bureau, 2021). 

Then, SVI sampling points were generated based on the threshold 
distance (T) along each street in our study area. The direction of sam
pling points depends on the topology and width of each street to avoid 
excessive or incomplete coverage along the street (Fig. 4). For each 
Baidu SVI, the heading parameters represent the horizontal directions of 
the camera, and 0◦, 90◦, 180◦, and 270◦ represent the front, right, back 
and left sides of the shooting vehicle, respectively. Some roads have two 
lines of SVIs sampling points and others have only one line. We classified 
all streets into three types depending on the distribution of sampling 
points and the existence of middle green belt (Fig. 4). Type A streets 
have only one line of sampling points, so we retrieved both 90◦ and 270◦

directions for each sampling point to detect trees on both sides of the 
road. Type B streets have two lines of sampling points without green
belts, so we retrieved only the 90◦ direction for each sampling point on 
both lanes. Type C streets have two lines of sampling points with 

greenbelt in the middle, so we retrieved both 90◦ and 270◦ directions for 
one line and only 90◦ direction for another line to avoid repeated 
counting of street trees in the greenbelt. 

We calculated the threshold distance (T) between street segments 
according to the distance (D) from the camera and curb, as shown in 
Fig. 4. As the range of view is 45◦ for every SVI, then T can be calculated 
as: 

T = 2*D× tan45◦ (1)  

where D is the distance from the camera to the curb estimated by a deep 
learning model in Section 2.4. Then, the closest segment distance was 
selected based on this threshold distance. 

For the Baidu Street View, a total of 24 image tiles (512*512 pixels 
for each tile) for each sampling point were directly retrieved from the 
Baidu API, and the 24 image tiles were stitched together to create images 
with different horizontal directions, such as 90◦ and 270◦. Each image is 
constructed by three tiles (1536 pixels) in the vertical direction and two 
tiles (1024 pixels) in the horizontal direction (Fig. 5). 

Finally, a total of 185,830 SVIs were retrieved for this study. Among 
them, 2700 images (1350 images are street trees under built environ
ment background and 1350 images are street trees under natural envi
ronment background (Fig. 6)) were labeled and randomly split into 
training, validation, and testing sets with proportions of 70%, 20% and 
10%, respectively. The selected dataset covers a wide range of aspects, 
including context (urban, suburban and country), vegetation density 
(sparse and crowded), weather and lighting conditions. 

2.2.2. Ground truth labeling 
Because we focused on street trees, other plants (grass or bush) or 

nonstreet trees should be excluded from the tree assessment. To achieve 
this, SVIs containing only nonstreet trees and other plants were included 
in the training set and marked as unannotated images. To improve the 
robustness of the training model, street trees that are obscured objects 
(e.g., fences, vehicles, traffic signs) were also included in the dataset. 
The crown is the most distinguishing part of a tree, but computers tend 
to regard several trees as one tree if we label only the crown. Hence, both 
the crown and trunk of a tree were annotated with the same bounding 

Fig. 4. Select sampling points and directions based on the type of roads and the distance between trees and cameras.  
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box. An opensource labeling tool (Roboflow, 2022) was chosen as the 
labeling platform. Two research assistants in Jinan with adequate 
training on local trees labeled the nine classes (eight species and “other 
trees”) of street trees in 2573 SVIs at all. Each of them labeled each SVI 
once and validated it in the field. Then, the mismatched SVIs are selected 
for further validation. The labeled SVIs were then divided into training, 
validating and testing datasets at a ratio of 7:2:1. Fig. 6 shows some 
labeled training images with different colors representing different 
species. 

2.2.3. YOLOv5 network 
Considering both efficiency and robustness, we selected the YOLOv5 

model, a one-step real-time multi-object detection algorithm (Redmon 
et al., 2016) as the base model for tree identification. Compared with 
other popular object detection algorithms, YOLOv5 has a higher infer
ence speed and higher accuracy in object detection (Redmon & Farhadi, 
2017). YOLOv5 also performs better at the detection of small or varied- 
scale objects and overlapping objects, e.g., street trees. These advan
tages are essential for this study because of the varied scales of street 
trees and the complexity of the urban environment in SVIs. 

Fig. 7 shows the architecture of YOLOv5. The YOLOvs5s network 
includes five parts, which are input, backbone, neck, head, and output, 
and each part consists of different network layers with specific functions. 
The first part is the backbone, which is used to extract features from 
input images. The second part is neck, which is used to mix and combine 
features from backbone logical groups and transmit them for detection. 
The final part is the head, which is used to detect the object from the 
feature maps and output a vector with the class probability and the 
position and size of the objects. 

2.2.4. Class-balanced loss function 
In SVIs, street trees exhibit a long-tailed class distribution, where a 

small portion of dominating tree species have a relatively larger number 
of samples, while many other species have a relatively smaller number 
of samples. As the training dataset is generated from SVIs, such species 
imbalance of the training dataset can pose several problems in model 
training. The lack of tail-species samples makes it difficult to learn 
intraclass variance and can cause overfitting problems. The dominance 
of the head class leads to potentially biased feature spaces and decision 
boundaries so that the classifier tends to identify trees as head-class 
species instead of tail-class species. 

One potential solution to this challenge is to replenish tail-species 
with images from extra sources. However, trees in non-street-view im
ages (non-SVIs) have different distributions and backgrounds from those 
in SVIs, and the training model works best when trained on images from 
a similar distribution as the test images. 

Instead, we modified the classification loss function of the YOLOv5 
model to mitigate the long-tailed species distribution problem. The loss 
function of YOLOv5 is composed of three parts: bounding box regression 
loss, the confidence of object presence loss and the classification loss. 
The original classification loss function of YOLOv5 is the Cross-Entropy 
(CE) loss function, which can be written as: 

CEsoftmax(z, y) = − log

⎛

⎜
⎜
⎜
⎝

exp
(
zy
)

∑C

j=1
exp

(
zj
)

⎞

⎟
⎟
⎟
⎠

(2)  

where zy is the predicted probability for species y, and C is the total 
number of species. 

Fig. 5. Retrieving and transforming Baidu SVIs.  
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The species-weighted loss function introduces a weighting method 
inversely proportional to the effective number of samples of each species 
(Cui, Jia, Lin, Song, & Belongie, 2019); then, the model increases the 
probability of small classes, decreases that of large classes and closes the 
predicted results to the truth (Fig. 8). Suppose species y has Ny training 
samples and the total number of training samples is N. Then, the species- 
balanced (SB) cross-entropy loss can be written as: 

SBsoftmax(z, y) = −

(
1–(N–1)

N

)

(
1 −

Ny − 1
Ny

)log

⎛

⎜
⎜
⎜
⎝

exp
(
zy
)

∑C

j=1
exp

(
zj
)

⎞

⎟
⎟
⎟
⎠

(3)  

Fig. 6. Samples of labeled images with different colors represent different species. a, b & c are street trees in built environment and d, e & f are street trees in natural 
environment. 

Fig. 7. Overview of the architecture of YOLOv5.  
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2.2.5. Metrics and mapping of street trees 
The SVIs annotated by the object detection model are further pro

cessed to estimate each tree's location, height, and canopy diameter 
(Fig. 9). The distance between each pixel on the SVI and the camera is 

essential to the estimation of tree metrics. Hence, we employed Mono
depth2 (Godard et al., 2019), a deep learning method that can generate 
scene depth maps based on 2D images, to estimate the distance (D) 
between each street tree trunk and the camera from the SVI. The model 

Fig. 8. By modifying the loss function, the learned boundary of the trained model is closed to the true boundary.  

Fig. 9. Calculating (a) geographic coordinates, (b) tree height, and (c) tree canopy diameter. Calculating (d) depth layers and (e) tree information from street 
view images. 
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is pretrained on KITTI stereo dataset (Geiger et al., 2013), which is the 
commonest benchmark and training dataset for depth estimation con
tains real street view images with corresponding LiDAR imagery. Then, 
we used the relative azimuth angle and distance between the tree and 
the camera location of the SVI in this tree to estimate a tree's location. 
The coordinates of the detected tree (x, y) will then be calculated using 
Eq. (4): 

x = x' +D*cosθ, y = y' +D*sinθ (4)  

where (x', y') is the camera coordinate; D is the distance from the camera 
to the bottom of the tree; and θ is the yaw angle between the camera and 
the bottom of the tree, which equals (θ' + θ0) (where θ0 is the default SVI 
tile yaw-angle and θ' is the yaw angle in depth image space). 

We further estimated tree height (h) and canopy diameter (w) using 
Eqs. (5) and (6), respectively. The canopy diameter represents the width 
of crown from the perspective of camera. 

h = D*(tan ð'–tan ð) (5) 

where ð = 180◦/H*(Z-H/2) and ð’ = 180◦/H*(Z′-H/2) (where H is 
the total number of pixels in the height of the image; Z is the number of 
pixels from the bottom of the tree to the bottom edge of the image; and Z′

is the number of pixels from the top of the tree to the bottom edge of the 
image). 

w = D*(tan μ'–tan μ) (6)  

where μ = 360◦/W*(Y-W/2), and μ' = 360◦/W*(Y′-W/2) (where W is 
the total number of pixels in the weight of the image; Y is the number of 
pixels from the right end of the crown of the tree to the right edge of the 
image and Y′ is the number of pixels from the left end of the crown of the 
tree to the right edge of the image). 

As some SVIs overlap in streetscape coverage, some trees may be 
identified in two images. We use geographical coordinates to remove 
any duplicated trees (a tree within 0.5 m of another tree) in the 
inventory. 

2.2.6. Model evaluation 

2.2.6.1. Evaluation for tree recognition and classification model. To vali
date the accuracy and efficiency of the model and the whole process, we 
compared the performance of the detection model with the species- 
balanced loss function (Model A) and without the species-balanced 
loss function (Model B). We assessed two models on the testing data
set and calculated the precision, recall and average precision for com
parison (Szegedy, Toshev, & Erhan, 2013). 

Precision measures the ratio of relevant instances among the 
retrieved instances, while recall measures the ratio of relevant instances 
that were retrieved. In an object detection task, increasing precision can 
lead to a decrease in recall. Average precision (AP) measures the inter
section area of prediction and ground truth boundaries divided by the 

union area of prediction and ground truth boundaries, which can bal
ance the precision-recall tradeoff and has been widely employed to 
assess the performance of object detection models. This study uses mean 
AP at IoU (intersection over union) threshold 0.5 (mAP0.5) as the major 
metric to evaluate the performance of the model. 

The performance of our new model is promising (Table 1). In this 
study, to ensure the precision of information in tree inventory, more 
weight is assigned to precision than recall. Therefore, our model fitness 
is set as F = 0.8*precision+0.2*recall. We calculated precision, recall 
and average precision on the test SVI set for each species. The model 
with the species-balanced loss function (Model A) performed better 
(0.587 mAP0.5 and 0.715 highest AP0.5) than the model without the 
species-balanced loss function (Model B) (0.536 mAP0.5 and 0.710 
highest AP0.5). 

In general, species with larger sample sizes are easier to be identified. 
Locust trees, plane trees and willows have the best results. Locust trees 
and plane trees have 335 and 407 samples, respectively, and willows 
have a distinguishing appearance compared with other species. 
Although withered trees have 435 labeled samples, the test result is not 
as high as expected. The large variance in the appearance of withered 
trees may hinder the detection performance. 

The performance of the model with the species-balanced loss func
tion improved for nearly all species to varied extents. The most promi
nent improvements are on the recall of cypress and pine tree. These two 
species only have 93 and 96 labeled samples for training. This indicated 
that including a species-balanced loss function can effectively mitigate 
problems caused by long-tailed class distributions. 

We compared the performance of our models with existing studies on 
street tree species classification with SVI as the only data source (Table. 
2). Our model A exceeds both two previous studies in mAP0.5 (Branson 
et al., 2018; Choi et al., 2022). 

2.2.6.2. Evaluation for quantitative assessment. The accuracy of depth 
estimation is critical because all other quantitative metrics are derived 
from it. To evaluate the performance of depth estimation, we use five 
evaluation indicators: RMSE, RMSE log, Absolute Relative difference, 
and Squared Relative difference and Accuracies (Eigen, Puhrsch, & 
Fergus, 2014). 

Google API provides depth map corresponding to each SVI, which 
was obtained by LiDAR sensors and can be used as ground truth. We test 

Table 1 
Comparison of Model A (with the species-balanced loss function) and Model B (without the species-balanced loss function) for the training results.  

Species Labeled samples number Model A Model B 

Precision Recall Average precision Precision Recall Average precision 

Locust tree 335 0.796 0.543 0.693 0.784 0.541 0.684 
Willow 97 0.837 0.603 0.715 0.747 0.612 0.71 
Poplar 150 0.631 0.513 0.528 0.52 0.464 0.471 
Pine tree 96 0.697 0.515 0.528 0.536 0.326 0.331 
Planes 407 0.602 0.719 0.623 0.594 0.722 0.611 
Wax tree 98 0.583 0.509 0.521 0.581 0.459 0.503 
Boxwood 525 0.639 0.582 0.594 0.634 0.583 0.593 
Cypress 93 0.517 0.496 0.497 0.434 0.309 0.386 
Mean (all)    0.587   0.536 
Mean (built environment)    0.603   0.579 
Mean (natural environment)    0.571   0.493  

Table 2 
Comparison of street tree species classification models' performance between 
our studies and existing studies using SVIs as the only data sources.   

mAP0.5 region 

(Choi et al., 2022) 0.564 East Asia 
(Branson et al., 2018) 0.581 North America 
Model A 0.587 East Asia 
Model B 0.536 East Asia  
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the accuracy of pretrained Monodepth2 on 741 Google Street View 
images. The evaluation outcome is compared with other state-of-the-art 
studies in depth estimation (Table 3). Overall, our model shows a 
satisfactory accuracy of 0.783, which is close to, if not exceeds other 
models. 

3. Case study in Jinan city 

3.1. Descriptive statistics 

A total of 144,736 street trees were detected from 185,830 SVIs in 
Jinan city. The data were compared with official survey data conducted 
by the Jinan Forestry Bureau in 2007 (Jinan Forestry Bureau, 2007). 
Table. 4 shows that the proportions of eight species and “other trees” in 
this study are approximately consistent with those of the official field 
survey. 

Quantitative results such as average height and average crown 
diameter are compared with data from a worldwide tree attribute 
database (World Agroforestry Centre (ICRAF), 2016). Most assessed 
results are consistent with the database except the average crown 
diameter of some species. 

3.2. Street tree inventory and applications 

All obtained information above was then used to establish the city
wide tree inventory and was visualized on a map based on their accurate 
coordinates. After the establishment of the tree inventory, we analyzed 
the street tree diversity of the study area. 

The street tree inventory can be visualized in different ways. Fig. 10 
shows the detected street trees around the Huancheng Park area. Each 
circle represents one tree, while the color of each circle represents the 
species of the tree, and the circle size represents the crown diameter of 
the tree. Street trees in this area have diverse species and crown di
ameters. Willows and boxwoods are two major species there. 

Furthermore, the data can be aggregated and visualized in any 
spatial unit, e.g., 1 km *1 km grids (Fig. 11). The inner city of Jinan 
consists of the old town and the new development area surrounding the 
old city (Fig. 11). The old town features dense and narrow streets and 
low-rise buildings, while the new development area is dominated by 
high-rise buildings. Another significant boundary in this area is Jingshi 
Road. The north side of the road is a highly populated plain area, while 
the south side mountainous area has the most high-quality and low- 

density residences. 
Fig. 11a reveals that locust trees, boxwood and plane trees are the 

three major species of street trees in the whole study area. We also 
observed spatial disparity in street tree provision within Jinan. The old 
town is dominated by boxwood, while the new development area is 
dominated by plane trees. The old town had the highest number of 
detected street trees and street tree species (Fig. 11b & e). Fig. 11d shows 
that the median tree height in the new development area is higher than 
that in the old town. To further understand the street tree diversity of 
Jinan city, this study introduces the Shannon diversity index as follows 
(Nolan & Callahan, 2006). 

H ′

= −
∑s

i=1
pilnpi (7) 

The higher the value of the Shannon index is, the higher the diversity 
of species in the specific area. A higher Shannon index illustrates that the 
old town has more diverse tree species than the new development area 
(Fig. 11f). 

4. Discussion 

4.1. Model of fine-grained object detection on street trees 

Previous studies have shown promising results when using computer 
vision technology to conduct image segmentation or object detection on 
SVIs. However, most studies focused on general element segmentation 
or coarse-grained object detection, such as for greenery, buildings and 
pedestrians. Fine-grained recognition tasks, such as tree species, remain 
challenging for two reasons. First, tree species have low interclass 
variance and high intraclass variance, especially in SVIs. Second, street 
tree species usually feature a long-tailed distribution, i.e., most street 
trees belong to a small number of dominating tree species, while a small 
proportion of trees belong to many relatively rare tree species. Such a 
skewed distribution leads to insufficient training data for these relatively 
rare tree species. 

In this study, to cope with the long-tailed class distribution of the 
training dataset, we modified the classification loss function. We 
assigned the weights of each species inversely proportional to the its 
sample size to push the learned boundary more favorable to the tail 
classes. Such modification leads to significant improvement in identi
fying most species. Using a smaller training dataset, our modified model 
obtained similar, if not higher, performance compared with existing 
studies (Branson et al., 2018; Ringland et al., 2021). We concluded that 
with appropriate processing and parameters, our novel approach can 
achieve reasonable accuracy with low cost in establishing citywide tree 
inventories for many cities worldwide. 

4.2. Influences of the characteristics of SVIs 

The characteristics of SVIs, such as weather conditions, collection 
seasons, and the surrounding environment, may influence the accuracy 
of street tree identification and assessment. For instance, the appearance 
of street trees, especially deciduous trees, differs significantly in 
different seasons in temperate climate zones, including northern China. 
Therefore, all retrieved SVIs, which are used for the establishment of 
tree inventory, are generated between March and August according to 
the timeline of Baidu SVIs. In further studies, we will train models to 
recognize street trees in different seasons. 

This study also illustrated that the surrounding environments of SVIs 
can influence the accuracy of the model. The accuracy of detecting street 
trees in urban background outperforms that of detecting trees in natural 
environment background (such as suburban areas) or green spaces (such 
as natural parks). This result suggests that our method may work well in 
built environment and that other tools (such as the application of 
LiDAR) may be more suitable for tree detection in natural environment. 

Table 3 
Comparison of evaluation results with other state-of-the-art studies in monoc
ular depth estimation with deep learning methods.  

Studies Absolute 
Relative 
difference 

Squared 
Relative 
difference 

RMSE RMSE 
log 

Accuracy 
(δ < 1.25)  

Lower is better Higher is 
better 

(Zhou, Brown, 
Snavely, & 
Lowe, 2017) 

0.208 1.768 6.865 0.283 0.678 

(Casser, Pirk, 
Mahjourian, & 
Angelova, 
2019) 

0.109 0.825 4.750 0.187 0.874 

(Wang, Wang, 
Liu, & Chen, 
2019) 

0.158 1.277 5.858 0.233 0.785 

(Yin & Shi, 
2018) 

0.155 1.296 5.857 0.233 0.793 

(Z. Yang, Wang, 
Xu, Zhao, & 
Nevatia, 
2017) 

0.182 1.481 6.501 0.267 0.725 

This study 0.170 1.167 5.596 0.247 0.783  
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4.3. Indications for urban planning and management of street tree 
inventory 

Based on this city-wide tree inventory in Jinan city, this study also 
conducts some spatial analysis that may provide planning implications 
for urban planners and city managers. 

We conducted six city-wide analyses and data visualization based on 
tree inventory data. We analyzed the distribution of detected street trees 
based on number of trees, species and tree height.Fig. 11a reveals the 
dominant species of each grid. Boxwoods and locust trees are two major 
species in the old town and southern area, while plane trees occupy the 
northern part of the newly developed area. Studies (M. Nowak, Szy
mańska, & Grewling, 2012) found that plane tree pollen is responsible 
for a high rate of allergic reactions, which have a negative impact on 
walkability and pedestrian health. This indicated that government of
ficials should reconsider the choices of street trees in newly developed 
areas. Fig. 11b shows the number of detected street trees in each grid. 
Some studies found that the quantity of street greenery has a positive 

association with residents' physical activity and active transportation, 
which benefits both citizens' health and the urban environment (Huang, 
Jiang, & Yuan, 2022; Jiang et al., 2021; Lu, 2019; Lu et al., 2018). 
Density of street trees in old town are higher than that in newly devel
oped areas, which indicates that the government should put more effort 
into the green infrastructure of newly developed areas. Fig. 11c and 
Fig. 11d illustrate that street trees in old towns have a higher average 
height and longer average crown diameter. These results are logical, as 
street trees are planted later in newly developed areas than in old towns. 
Increasing tree crown diameter can significantly mitigate the urban heat 
island effect, so urban planners can choose tree species with larger 
crowns (Wang and Akbari, 2016). Fig. 11e and Fig. 11f show the number 
of species and diversity index of each grid. Both of these values are 
higher in old town areas than in newly developed areas. Studies have 
found that street tree species diversity has negative associations with 
crime (J. Lin, Wang, & Huang, 2021) and can benefit both pedestrians 
and city ecology. These spatial analyses and visualizations can provide 
intuitive implications that can be further analyzed by advanced 

Table 4 
Descriptive statistics of detected street trees compared with field audit data.  

Species Detected number 
(proportion) 

Field study in 2007 number 
(proportion) 

Height 
(m) 

Benchmark height 
(m) 

Crown diameter 
(m) 

Benchmark diameter 
(m) 

Mean (SD) Mean (SD) 

Locust tree 15,819 (19%) 21,904 (26%) 9.09 
(7.78) 

8–24 5.48 (5.34) ~ 8 

Willow 5387 (7%) 1661 (2%) 5.71 
(5.17) 

8–15 4.83 (5.04) 7–12 

Poplar 14,219 (17%) 23,563 (28%) 9.48 
(7.78) 

12–20 5.43 (4.12) ~ 6 

Pine tree 1721 (2%) NA 9.43 
(5.72) 

3–24 4.34 (5.00) 6–12 

Plane tree 31,726 (39%) 29,082 (34%) 5.35 
(4.43) 

8–30 6.25 (5.48) 5–24 

Wax tree 1526 (2%) 6570 (7%) 5.43 
(5.72) 

3–14 4.34 (5.01) 6–7.5 

Boxwood 33,968 NA 0.76 
(0.66) 

0.5–3 2.38 (5.45) NA 

Cypress 7006 (9%) NA 5.23 
(5.51) 

6–25 1.73 (1.32) 2–9 

other 4272 (5%) 2742 (3%) NA NA NA NA 
Sum (except 

boxwood) 
81,676 85,522 4.39 

(5.57) 
NA 3.37 (4.32) NA  

Fig. 10. Distribution of detected street trees around the Huancheng Park area.  
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statistical techniques. 

4.4. Limitations 

Although we achieved encouraging results, both the model and the 
pipeline have potentials for improvement. 

First, we used SVIs as the sole data source, while SVIs may be 
incomplete or inconsistent. For instance, Baidu SVIs cannot achieve full 
coverage of urban roads in some cities. Some studies tried to combine 
satellite-based and drone-based images. In addition, the SVIs of a city 
can be taken in multiple seasons (summer or winter), various weather 
conditions (sunny or rainy) and particular times of the day (daytime or 
evening), which can affect the appearance of street trees and model 
accuracy. We tentatively suggest that SVIs used for tree inventory should 
be taken in summer or spring when the characteristics of most tree 
species are most distinguishing. Our findings also suggest that Baidu 
should collect SVIs more frequently and provide more API parameters, 

such as weather context and collection times. 
Second, the distance between sampling points along each street was 

calculated based on the distance between the camera and the trees. 
However, the distances between trees on the middle greenbelt and the 
cameras are distinct from those on the sidewalk, so it is possible to 
repeat or miss counting these street trees. Hence, more specific adjust
ments are needed in future studies. 

Third, some tree information, including the height, crown diameter 
and coordination, was calculated based on the distance from the SVI 
camera to the street tree. Some studies used depth imagery of Google 
SVIs (Hebbalaguppe, Garg, Hassan, Ghosh, & Verma, 2017; Ning et al., 
2022), which are data layer representing the distance from any pixel to a 
camera in a SVI (Fig. 12), to obtain the distance between objects and the 
camera. However, this method is impractical in mainland China because 
of the lack of coverage of Google Maps. Hence, we estimated this dis
tance by a deep learning model, and such model should be further 
validated. 

Fig. 11. Street tree inventory visualization of 1 km*1 km grids in the inner city of Jinan; (a) the most species of street trees; (b) the number of detected street trees; 
(c) the median height of detected street trees; (d) the mean crown diameter of detected street trees; (e) the species richness of street trees; (f) the Shannon diversity 
index of street tree species. 
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Fourth, although YOLOv5 is an efficient object detection model, 
some improvement in the model is feasible. For instance, although the 
species-based weighing function has increased precision and recalls for 
species with small sample sizes in this study, more advanced ap
proaches, such as head-to-tail transfer learning, may better mitigate the 
issue of long-tail species distribution (Zhang, Kang, Hooi, Yan, & Feng, 
2021). 

5. Conclusion 

This research proposes an improved method of automatedly detect
ing, classifying and measuring urban street trees using computer vision 
approaches and SVIs in large-scale practice. The results are encouraging. 
Compared with other methods, this approach is cost-effective because 
SVIs are freely available for most cities in the world. Compared with 
other similar studies, this research identifies more than eight tree species 
with SVIs and computer vision algorithms in such a large-scale practice 
and obtain a relatively high accuracy. We find that a species-based 
weighted loss function can improve the overall model performance by 
addressing the long-tail distribution of street tree species. This study is 
also the first one to adopt deep learning methods to estimate depth for 
tree inventory and validate its efficiency on SVIs. 
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