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A B S T R A C T   

Many studies have confirmed that the characteristics of the built environment affect individual walking be-
haviors. However, scant attention has been paid to population-level walking behaviors, such as pedestrian 
volume, because of the difficulty of collecting such data. We propose a new approach to extract citywide 
pedestrian volume using readily available street view images and machine learning technique. This innovative 
method has superior efficiency and geographic reach. In addition, we explore the associations between the 
extracted pedestrian volume and both macro- and micro-scale built environment characteristics. The results 
show that micro-scale characteristics, such as the street-level greenery, open sky, and sidewalk, are positively 
associated with pedestrian volume. Macro-scale characteristics, operationalized using the 5Ds framework 
including density, diversity, design, destination accessibility, and distance to transit, are also associated with 
pedestrian volume. Hence, to stimulate population-level walking behaviors, policymakers and urban planners 
should focus on the built environment intervetions at both the micro and macroscale.   

1. Introduction 

Global urbanization in the last few decades has resulted in car de-
pendency (Wang & Zhou, 2017) and more sedentary lifestyles among 
urban residents (Monda et al., 2007; Wang, Feng, et al., 2020). There-
fore, the problem of physical inactivity has attracted the attention of 
researchers and public health officials in recent years (Hallal et al., 
2012). According to a worldwide study, about one-third of urban adults 
do not meet the recommended 150 min of moderate-to-vigorous phys-
ical activity per week (Hallal et al., 2012; Kohl et al., 2012). Among all 
types of physical activities, walking is arguably the most common and 
convenient, because it requires no specialized equipment, venue, or 
skills and can be easily incorporated into one's daily routine (Eyler et al., 
2003; Foster et al., 2018; Lee & Buchner, 2008; Lu, Sarkar, & Xiao, 
2018). Walking behaviors play a vital role for active living, urban vi-
tality, and sustainable mobility (Cerin et al., 2007; Gauvin et al., 2008; 
Jacobs, 1961; Sung et al., 2015). Moreover, empirical evidence suggests 
that regular walking can substantially improve health by, for example, 

reducing the risk of stroke and obesity, and improving bone health and 
cognitive function (Lee et al., 2012; Sallis et al., 2012). 

Promoting walking and pedestrian volume has become a priority in 
public health and urban planning worldwide (Chen et al., 2020; Kohl 
et al., 2012). In addition to educational interventions at personal level, 
there is increasing attention towards the role of built environment on 
fostering walking behaviors (Handy et al., 2002; Jacobs, 1961; Whyte, 
1980). Synthesis reviews have provided solid evidence that the built 
environment characteristics can impact walking (Barnett et al., 2017; 
Day, 2016; Saelens & Handy, 2008; Sallis et al., 2012). However, most 
empirical studies evaluate individual-level walking behaviors (e.g., 
walking trips) by surveys and questionnaires, which has inherent 
methodological limitations such as prone to recall bias and social 
desirability bias, time-consuming, and labor-intensive. Furthermore, 
previous studies were often conducted in limited research scale such as 
several residential neighborhoods and street segments. To date, scant 
attention has been paid to population-level walking behaviors (e.g., 
collective pedestrian volume in a street block) at a large geographic area 
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because of the difficulty of collecting such data (Cesare et al., 2019; 
Hankey et al., 2017). The collective walking behavior can stimulate 
urban vitality, and it also has many social, economic, and environmental 
benefits (Lee et al., 2012; Sallis et al., 2012). In addition, most studies 
measure the built environment characteristics through either macro- 
scale D variables (e.g., Density, Diversity, Destination accessibility) or 
micro-scale streetscape features (e.g., greenery, sidewalk). 

Recent advances in freely available street view images and machine 
learning have stimulated urban studies at finer granularity and larger 
scale (Biljecki & Ito, 2021; Kang et al., 2020; Rzotkiewicz et al., 2018). 
Researchers have increasingly employed street view images as an 
effective alternative to audit the built environment characteristics at 
street level. Moreover, street view image has been validated with good 
accuracy to estimate pedestrian volume (Chen et al., 2020; Yin et al., 
2015). Thus, it is promising to examine the association between the built 
environment and pedestrian volume at a larger area with finer-grained 
details in different urban contexts. By assessing population-level 
walking behaviors, urban planning can better formulate planning in-
terventions to promote regional physical activity. 

Due to the current research gaps, this study investigated the associ-
ation between street-level built environment and population-level 
walking behaviors (i.e., pedestrian volume) using street view images 
collected in Shanghai, China. Both pedestrian volume and street-level 
built environment factors are assessed by integrating street view im-
ages with machine learning. This work extends previous research in 
several respects. First, it contributes to the fields on the associations 
between the built environment and pedestrian volume by simulta-
neously investigating both macro- and micro-scale built environment 
features. Second, collective walking behaviors are measured in terms of 
pedestrian volume for a larger geographic area (i.e., the entire urban 
area of Shanghai) than in previous studies, which enables our investi-
gation with a large representative sample. Third, we focus on a dense 
Chinese city undergoing rapid urbanization, which is relatively less 
studied in the literature. Our findings can serve as guidelines for poli-
cymakers and urban planners to incorporate health promotion into built 
environment interventions. 

1.1. Literature review 

1.1.1. Assessing population-level walking behavior 
Although numerous studies have focused on individual-level walking 

behaviors, scant attention has been paid to population-level walking 
behaviors on a large scale because of the difficulty of collecting such 
data (Cesare et al., 2019;Foster et al., 2018 ; Hankey et al., 2017 ; Im & 
Choi, 2018). Individual-level walking behaviors are typically collected 
via surveys and questionnaires (Ewing & Cervero, 2010; Saelens & 
Handy, 2008). To enquire whether an individual has achieved the rec-
ommended level of physical activity, researchers usually focus on the 
individual's duration and frequency of individual-level walking trips 
(Bornioli et al., 2019; Christman et al., 2019; Lu, Sarkar, & Xiao, 2018). 
However, the precise geographical contexts of individual walking trips 
are largely unknown, making it difficult to granularly identify built 
environment factors that affect individual-level walking behaviors, 
namely, the bias of the uncertain geographic context problem (Kelly 
et al., 2014; Kwan, 2012; Saelens & Handy, 2008). 

Recently, some scholars have argued that more attention should be 
paid to population-level walking behaviors, because such behaviors can 
reflect the overall intensity of physical activity in a large population 
(Foster et al., 2018; Hankey et al., 2017; Im & Choi, 2018). Furthermore, 
population-level walking behaviors are directly affected by urban 
planning and urban design characteristics and hence are an easily 
modifiable outcome of potential urban planning interventions (Cesare 
et al., 2019). Recent studies indicate that pedestrian volume is a suitable 
proxy for population-level walking behaviors (Cambra & Moura, 2020; 
Hankey et al., 2017; Kang, 2018). Two approaches are typically used to 
assess pedestrian volume. One approach is to aggregate individual 

walking data into a certain geographic unit (e.g., a community block) 
(Boer et al., 2007; Sung et al., 2015). For instance, a study conducted in 
South Korea aggregated a relatively large individual-level survey dataset 
at the administrative block level to assess population-level walking trips 
(Sung et al., 2015). Nonetheless, studies have evaluated walking and 
built environment characteristics within certain spatial boundaries (e.g., 
residential neighborhood; community), which can cause the modifiable 
areal unit problem (MAUP) (Wong, 2004). The other approach is to 
conduct a field audit to count the number of pedestrians on different 
street segments (Brownson et al., 2009; Cambra & Moura, 2020; Haj-
rasouliha & Yin, 2015; Kang, 2018; Kelly et al., 2014). For instance, 
Hankey et al. (2017) estimated block-level pedestrian volume based on 
field observation data to represent population-level rates of active 
travel. 

However, both these approaches have certain limitations. Specif-
ically, surveys require respondents to recall their walking behaviors over 
a week or month, which may cause recall bias. Field audits require many 
investigators to record pedestrian walking behaviors for a long time, 
which is expensive and labor-intensive (Cambra & Moura, 2020; Chen 
et al., 2020; Kelly et al., 2014; Yin et al., 2015). It is difficult to measure 
and estimate pedestrian volume at a large spatial scale. 

1.1.2. Association between the built environment and walking behavior 
There is strong evidence that various built environment character-

istics affect walking behaviors (Saelens & Handy, 2008; Sallis et al., 
2012). The features of built environment can be divided into 
neighborhood-level macro-scale features (e.g., urban density, land use, 
street connectivity) and street-level micro-scale features (e.g., street 
tree, sidewalk) (Ewing et al., 2016; Nagata et al., 2020). 

The features of the macro-scale built environment can be oper-
ationalized as five D variables: density, diversity, design, destination 
accessibility, and distance to transit (i.e., the 5Ds framework) (Boer 
et al., 2007; Ewing & Cervero, 2010; Kang, 2018; Lu, Chen, et al., 2018). 
Overall, people tend to walk more in an environment with higher levels 
of density, diversity, and destination accessibility, better pedestrian- 
oriented design, and shorter distance to transit (Cerin et al., 2007; 
Hajrasouliha & Yin, 2015; Saelens & Handy, 2008). However, there are 
mixed findings of which aspects of the macro-scale built environment 
affecting walking within distinctive urban contexts (Barnett et al., 2017; 
Forsyth et al., 2007; Kang, 2018). 

Micro-scale built environment characteristics mainly refer to the 
elements and features that pedestrians can directly perceive on the 
streets (Boarnet et al., 2011; Ewing et al., 2016; Nagata et al., 2020). 
Streetscape features, such as characteristics of building (Boarnet et al., 
2011), open sky (Yin & Wang, 2016), greenspaces (Lu, Sarkar, & Xiao, 
2018), and sidewalk (Nagata et al., 2020), have been associated with 
walking behaviors. Nevertheless, the built environment characteristics 
were typically measured by either macro-scale D variables (Boer et al., 
2007; Cerin et al., 2007; Lu et al., 2017) or micro-scale streetscape 
features (Boarnet et al., 2011; Hajrasouliha & Yin, 2015). Few studies 
have simultaneously evaluated both in a large geographic area. 

1.1.3. Auditing the built environment and pedestrian volume using street 
view images 

In light of the increasing availability of street view images, re-
searchers have developed desk-based audit tools to assess micro-scale 
built environment characteristics (Badland et al., 2010;Rundle et al., 
2011 ; Rzotkiewicz et al., 2018). This new approach tends to produce 
reliable results compared with field audit, due to the extensive data 
availability and highly consistent image characteristics (Rundle et al., 
2011; Rzotkiewicz et al., 2018). For instance, study reported that street 
view data provides a valid measure for nine categories of street char-
acteristics (e.g., pavement width, and obstruction) (Griew et al., 2013). 
However, desk-based environment audit tool remains time-consuming. 
Recently, researchers have integrated street view images with ma-
chine learning to assess various aspects of streetscape features (Biljecki 
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& Ito, 2021; Kang et al., 2020), for example, the presence of street 
greenery (Li et al., 2015; Lu, Sarkar, & Xiao, 2018; Xia et al., 2021), 
street tree (Lumnitz et al., 2021; Richards & Edwards, 2017; Seiferling 
et al., 2017), open sky (Yin & Wang, 2016), building characteristics 
(Gong et al., 2018; Gonzalez et al., 2020; Kang et al., 2018), sidewalk 
(Nagata et al., 2020; Ning et al., 2021), perception of place (e.g., safety, 
lively, aesthetics, and depressing) (Kruse et al., 2021; Ma et al., 2021; 
Verma et al., 2020; Zhang et al., 2018), housing price (Law et al., 2019), 
and neighborhood demographics (Gebru et al., 2017). Machine 
learning-based approach is able to capture micro-scale urban environ-
ment with a larger geographic reach and higher efficiency. 

Furthermore, researchers have recently used street view images (e.g., 
Google Street View or Baidu Street View images) to estimate pedestrian 
volume because image-based pedestrian detection techniques can 
automatically count pedestrians with high accuracy (Chen et al., 2020; 
Yin et al., 2015). For example, street view images integrated with ma-
chine learning algorithm has been validated with high reliability to es-
timate pedestrian volume at street level compared with field audits 
(Chen et al., 2020). Therefore, the combination of street view images 
and machine learning is a promising approach for efficiently and 

accurately assessing population-level walking behaviors. 
To the best of our knowledge, no study has detected citywide 

pedestrian volume using street view images and associated it with both 
macro- and micro-scale built environment characteristics. Hence, little is 
known about the associations of citywide pedestrian volume and built 
environment characteristics, especially under a high-density urban 
context. 

2. Data and methods 

2.1. Research area 

Shanghai is a large metropolis with a population of about 24.3 
million in 2019 and serves as the economic, financial, industrial, and 
transportation hub of China. This study was conducted in the Middle 
Ring Road area (approximately 315 km2) of Shanghai (Fig. 1), roughly 
covering the most populous and urbanized area of the city. 

Fig. 1. Study area: a) map of China; b) map of Shanghai; c) study area showing street segments; d) study area divided into 500 m × 500 m fishnet showing building 
floor area. 
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2.2. Outcome variable: pedestrian volume 

In this study, pedestrian volume, estimated from street view images 
collected from Baidu Map (https://map.baidu.com), was used as the 
proxy for population-level walking behaviors. To improve the repre-
sentation of spatial features, the images were collected every 30 m along 
all streets in the study area. Accordingly, images were collected from 
127,921 sampling points along 28,397 street segments totaling 3,393 
km in length. According to data availability, nearly all of the street view 
images were collected with a timestamp of 2017 in Baidu Street View to 
match the data collection time period of the built environment factors 
(e.g., point of interest data). Street view collection vehicles for Baidu 
Map generally collect street view along streets with a bright and warm 
weather. 

Existing studies have thoroughly demonstrated that street view im-
ages can estimate pedestrian volume at street level combined with ma-
chine learning (Chen et al., 2020; Yin et al., 2015). By setting proper 
image retrieving parameters (e.g., heading, pitch, field of view), street 
frontage on both sides can be captured in images to automatically count 
pedestrians. To estimate the pedestrian volume, at each sampling point, 
we sampled two street view images at headings of 90

◦

and 270
◦

(i.e., 
capturing street frontage on both sides of the street) and a pitch (vertical 
direction), field of view, pixel size, and quality parameter of 0

◦

, 90
◦

, 
1024 × 1024 pixels, and 100, respectively. Then, the images were 
cropped from 312 to 712 at their vertical axes to a size of 1024 × 400 
pixels which mainly cover the sidewalk range of the street. Thereafter, 
the crowd counting feature of Baidu AI (https://ai.baidu.com/tech/bod 
y/num) through its application programming interface (API) was used 
to count the pedestrians in the images. Machine learning interface 
provided by AI company is able to achieve state-of-the-art accuracy and 
high computational capacity in pedestrian detection. In a pilot test on 50 
randomly selected images, Baidu AI has highly agreement with expert 
judgement (Pearson's r = 0.94). 

A 500 m × 500 m fishnet with 1322 grids was generated over the 
study area; these grids served as both spatial units and analysis units. 
The pedestrian volume in a grid was then measured as the average 
number of pedestrians in each image sampled within that grid. 

2.3. Micro-scale built environment characteristics 

In this study, micro-scale built environment characteristics refer to 
streetscape features that pedestrians can directly perceive. Recently, 
numerous studies have been conducted to audit street-level built envi-
ronment features using street view images and machine learning (Ma 
et al., 2021; Nagata et al., 2020; Zhang et al., 2018). The micro-scale 
characteristics were extracted from the street view images by using 
PSPNet (Zhao et al., 2017), an effective machine learning algorithm for 
scene parsing and semantic segmentation via the pyramid pooling 
module and the pyramid scene parsing network. This approach has 
achieved state-of-the-art pixel-level prediction performance on various 
datasets, such as Cityscapes (Zhao et al., 2017). By using a pre-trained 
Cityscapes model, each street view image was segmented into 19 cate-
gories of ground objects. For each ground object, we calculated the ratio 
of the number of pixels representing the object to the total number of 
pixels in the image. We chose greenery, open sky, building, roadway (i. 
e., street width), and sidewalk to represent the micro-scale built envi-
ronment, as the presence of these elements have been associated with 
walking behaviors (Ewing et al., 2016; Nagata et al., 2020). At each 
sampling point, this ratio of streetscape features was evaluated in two 
images - one each facing the front (0◦) and back (180◦) of the street 
(Fig. 2) - to more comprehensively match pedestrians' perception. The 
micro-scale streetscape features in a grid were then measured as the 
average ratios of sampling points within that grid for greenery, open sky, 
building, roadway, and sidewalk respectively. 

2.4. Macro-scale built environment characteristics 

Macro-scale built environment indicators were selected based on the 
5Ds framework: density, diversity, design, destination accessibility, and 
distance to transit (Ewing & Cervero, 2010; Kang, 2018; Lu, Chen, et al., 
2018). Density was measured in terms of building floor area in each grid. 
To measure diversity, we used point of interest (POI) data, a fine-grained 
data source providing comprehensive and accurate information on 
urban land use. The POI dataset was retrieved from Gaode Map, one of 
the most popular online map services in China, via its API (https://lbs. 
amap.com/). POIs in the Gaode Map database are divided into more 
than twenty categories. For this study, we reclassified the original POI 
dataset into five categories, namely, residential, enterprise, commercial, 
public service, and entertainment (Table 1), representing the five 
fundamental functions of a city (Zhao et al., 2020). After removing 
irrelevant and duplicate entries, we obtained 465,144 effective POI 
entities. Diversity was calculated on the basis of the entropy score (Eq. 1) 
of these POI data in each grid (Shannon, 1948). 

Mix index = −
∑n

i=1
pilnpi (1)  

where pi represents the proportion of ith of POI type, and n is the total 
number of POI types presented in that grid. 

Design was operationalized in terms of the number of street in-
tersections and street centrality in each grid. Street centrality represents 
the accessibility of a street segment in the street network, measured 
through spatial design network analysis (sDNA) as the betweenness 
value at a radius of 800 m (Cooper & Chiaradia, 2020). Destination 
accessibility was measured in terms of the number of POIs for the five 
fundamental POI types respectively in each grid. Finally, distance to 
transit was evaluated as the number of transit stops, including subway 
and bus stops in each grid. 

2.5. Statistical analysis 

Before the statistical analysis, we tested collinearity among the in-
dependent variables (Table 2) using the variance inflation factor (VIF). 
All of the variables had a VIF of ≤4 except for the proportion of building 
in the street view data, which was hence excluded from the follow-up 
analysis. 

First, we used ordinary least square (OLS) regression to investigate 
the relationships between the built environment and the pedestrian 
volume. OLS holds the basic assumption that the residual is random and 
homoscedastic (Anselin & Rey, 1991). The OLS model can be described 
as follows: 

y = Xβ+ ε (2)  

where y is the dependent variable, X is the matrix of the explanatory 
variables, β is a vector of the coefficients, and ε is a vector of random 
error terms. 

The results (e.g., coefficient size, significance) of the OLS model 
could be biased if spatial effects exist. Spatial data usually has the spatial 
dependence problem: that is, a value observed in one location depends 
on the values observed in neighboring locations. Therefore, we also used 
the spatial lag model (SLM) and the spatial error model (SEM) (Anselin 
& Rey, 1991). SLM posits that spatial dependence could be a result of 
autocorrelation in the dependent variable, whereas SEM tends to 
consider autocorrelation in the error term (Anselin & Rey, 1991). We 
firstly conducted OLS model in Geoda (Anselin et al., 2010) to determine 
which spatial model is more appropriate. Lagrange Multiplier (LM) and 
robust LM of diagnostics are often used to identify the fitness of spatial 
models. The results showed that SLM has a higher value of LM (312.63 of 
SLM vs. 252.31 of SEM) and Robust LM (70.84 of SLM vs. 10.52 of SEM) 
than does SEM, indicating that SLM is more appropriate. Moreover, we 
found that the spatial dependence of pedestrian volume is significant 
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Fig. 2. Assessing pedestrian volume and streetscape features from street view images: a) at each sampling point, four street view images were retrieved; b) front (0◦) 
and back (180◦) views were used for segmentation; c) right (90◦) and left (270◦) views were used for assessing pedestrian volume. 
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(Moran's I = 0.41; p < 0.001). SLM can be expressed as follows: 

y = ρWy +Xβ+ ε (3)  

where ρ is a spatial autocorrelation parameter, and Wy is a spatial weight 
matrix of the spatial lags for the dependent variables at nearby locations. 
With the cell of the fishnet (i.e., the fishnet grid) as the basic spatial unit 
in the analysis, queen contiguity was used to generate the spatial 
weights. The spatial regression models were run in GeoDa software. We 
believe that SLM can minimize the spatial effects, and that OLS and SLM 
analyses prove the robustness of the relationships. Notably, in our final 
regression analysis, the dependent variable of pedestrian volume was 
converted with a natural logarithmic transformation to achieve a better 
normal distribution and meet the assumption of regression. 

3. Results 

The descriptive statistics of the pedestrian volume and built envi-
ronment factors are presented in Table 2. The average pedestrian vol-
ume for all grid was 5.28 persons, indicating there are 5.28 persons in 
each street view image in a grid. Regarding the micro-scale built envi-
ronment, the average ratios of streetscape greenery, open sky, roadway, 
and sidewalk for all grids were 0.17 (standard deviation (SD) = 0.08), 
0.19 (SD = 0.07), 0.18 (SD = 0.08), 0.35 (SD = 0.04), and 0.02 (SD =
0.01), respectively. Regarding the macro-scale built environment, the 
mean value of all grids for building floor area was 359,748 m2 (SD =

192,454). The average value of all grids for land-use mix was 0.98 (SD =
0.30). The average number of street intersections was 34.17 (SD =
18.76), while the average betweenness for street centrality was 510.40 
(SD = 1379.54). The average number of residential, enterprise, com-
mercial, public service, and entertainment POIs were 16.890 (SD =
16.73), 84.580 (SD = 135.31), 211.40 (SD = 308.80), 19.71 (SD =
21.75), and 13.77 (SD = 18.34), respectively. The average number of 
transit stops was 2.76 (SD = 2.83). 

Fig. 3 shows the mean pedestrian volume in each street segment and 
fishnet grid. Pedestrian volume is varied in different street segments and 
grids across our study area. 

Table 3 presents the associations between the built environment and 
the pedestrian volume. SLM outperformed OLS in terms of goodness-of- 
fit (R2, log-likelihood, and AIC), so we mainly focus on the SLM results 
herein. Regarding the micro-scale built environment, streetscape 
greenery, open sky, and sidewalk were positively associated with 
pedestrian volume. Regarding the macro-scale built environment, 
building floor area was positively associated with pedestrian volume. 
Regarding diversity, the land-use mix index and number of street in-
tersections were positively associated with pedestrian volume. Desti-
nation accessibility exhibited significant associations with pedestrian 
volume. The number of commercial POIs and public service POIs were 
positively associated with pedestrian volume, while the number of en-
terprise POIs was negatively associated with pedestrian volume. 
Furthermore, the number of transit stops was positively associated with 
pedestrian volume. Hierarchical regression showed that the micro-scale 
built environment independently achieved an R2 of 0.51 (0.17 of OLS), 
while R2 reached 0.60 (0.49 of OLS) when both the micro- and macro- 
scale built environment were considered in the models. In addition, 
scattering plots using 2D histogram (see Appendix) were provided for 
measurements of pedestrian volume and predictions of pedestrian vol-
ume using OLS model, and measurements of pedestrian volume and 
measurements of the significant built environment factors using the 
regression dataset. 

4. Discussion 

This work extends previous research on the association between the 
built environment and walking behaviors in several respects. First, it 
makes a novel methodological contribution to assess population-level 
pedestrian volume using street view images and machine learning 
technique. The proposed method is superior to previous methods (such 
as surveys and field audits) in terms of efficiency and geographic reach, 
making it feasible to collect population-level waking behaviors for an 
entire city or for multiple cities within a short period. Therefore, the 
proposed method can help advance research on healthy cities, walk-
ability, urban planning, and other related topics. 

Second, the proposed method can simultaneously examine the ef-
fects of the micro- and macro-scale built environment on pedestrian 
volume and can thus more comprehensively clarify the effects of built 
environment characteristics on walking behaviors. Third, the present 
study systematically explored built environment and walking behaviors 
in a dense Chinese metropolis, which is relatively less studied in the 
literature, as most studies have been conducted in low- or medium- 
density cities in developed countries. 

The present study yielded three major findings. First, we found that 
some macro-scale built environment characteristics in the 5Ds frame-
work are associated with pedestrian volume, which is largely consistent 
with the findings of previous studies. Specifically, (1) urban density, 
measured in terms of building floor area, is positively associated with 
pedestrian volume. Building floor area can reflect the potential supply of 
pedestrians, as a larger floor area can accommodate more people for 
various activities. That high levels of population density, building den-
sity, or building floor area can stimulate walking at either the individual 
or population level has also been reported previously (Forsyth et al., 
2007; Kang, 2018). (2) Diversity is positively correlated with pedestrian 

Table 1 
Five fundamental POI types in this study and the corresponding categories in the 
original Gaode Map dataset.  

POI types Categories in the Gaode map dataset Count Percentage 

Residential Commercial house, residential 
building, residential community 

22,731 4.89% 

Enterprise Enterprise, company, factory 113,286 24.36% 
Commercial Food, beverage, shopping mall, market, 

store, theatre, commercial service 
office 

283,944 61.04% 

Public service Hospital, school, governmental 
organization, social group, 
management institution 

26,633 5.73% 

Entertainment Scenic spot, park, open square, tourist 
attraction 

18,550 3.98%  

Table 2 
Summary statistics for all variables within the Middle Ring Road area in 
Shanghai, sampled in 2017 (Fishnet = 500 m × 500 m, N = 1322).  

Variables (Unit) Min. Max. Mean SD 

Dependent variable     
Pedestrian volume (N) 0 31.278 5.280 4.827 
Independent variables     
Micro-scale built environment     
Greenery (0–1) 0 0.458 0.173 0.076 
Open sky (0–1) 0.005 0.383 0.192 0.072 
Building (0–1) 0.017 0.492 0.185 0.076 
Roadway (0–1) 0.167 0.617 0.351 0.038 
Sidewalk (0–1) 0 0.061 0.016 0.008 
Macro-scale built environment     
Building floor area (m2) 0 1,674,069 359,748 192,454 
Land-use mix index (≥0) 0 1.591 0.981 0.305 
Street intersection (N) 0 119 34.170 18.764 
Street centrality (≥0) 0 21,648 510.400 1379.543 
Residential POIs (N) 0 159 16.890 16.730 
Enterprise POIs (N) 0 1420 84.580 135.313 
Commercial POIs (N) 0 3503 211.400 308.797 
Public service POIs (N) 0 251 19.710 21.751 
Entertainment POIs (N) 0 313 13.770 18.342 
Transit stops (N) 0 19 2.756 2.828 

Note: Min. = Minimum; Max. = Maximum; SD = Standard deviation; N =
Number. 
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volume. Places with various land use types provide a diverse set of 
destinations for people to walk to, so higher land use diversity can 
promote pedestrian volume (Cerin et al., 2007; Im & Choi, 2018). (3) 

Street network design, which is measured in terms of street intersection 
density and betweenness centrality via graph theory, is positively 
associated with pedestrian volume. A better connected street network 
makes more destinations available within walking distance, further 
encouraging walking behaviors (Hajrasouliha & Yin, 2015). (4) Pedes-
trian destination accessibility, measured using POI data, is positively 
linked to pedestrian volume. In particular, the density of commercial 
and public service POIs has a positive effect on pedestrian volume. 
Previous findings support that greater choice of commercial and service 
destinations can better stimulate walking behaviors (Hahm et al., 2017). 
However, the density of enterprise POIs is negatively associated with 
pedestrian volume. This is because places with a high concentration of 
enterprise POIs are more likely to be the major workplaces within a city 
(Li et al., 2018). In addition, given that the average commute distance 
and duration is relatively long in Shanghai, people may prefer cars or 
public transportation modes over walking for their commutes, resulting 
in low pedestrian volumes (Li et al., 2018). (5) A shorter distance to 
transit may encourage walking behaviors, as people often walk to and 
from major transit stations while taking public transport (Cerin et al., 
2007; Kang, 2018). 

Second, we found that some micro-scale streetscape features play a 
vital role in influencing population-level waking behaviors. Specifically, 
street-level greenery, sidewalk, and open sky are all positively associ-
ated with pedestrian volume. Pedestrians are more likely to walk on 
streets with more visible greenery, as greenery can improve pedestrians' 
walking experience by increasing shade (Hahm et al., 2017) and 
reducing stress (Wang, Yang, et al., 2020); this finding is consistent with 
those from other cities (Lu, Sarkar, & Xiao, 2018). In addition, the 
presence of wide sidewalks, as a major walking infrastructure, can create 
a safe and pleasant walking environment and hence promote walking 
behaviors (Day, 2016; Nagata et al., 2020; Saelens & Handy, 2008). 
Furthermore, we found that the level of open sky is positively associated 
with pedestrian volume, which is inconsistent with the finding of a 
previous study (Yin & Wang, 2016). The different urban contexts in the 
two studies may explain this inconsistency. Our research was conducted 
in Shanghai, China, a dense urban area, whereas (Yin & Wang, 2016) 
was conducted in Buffalo, New York, USA, a city with relatively low 
urban density. Hence, the level of open sky in Shanghai is much lower 
than that in Buffalo. In high-density cities, more open sky and 
daylighting may promote walking behaviors. However, in low-density 
or medium-density cities, more open sky may make the street too 
sunny and hot to walk on. This indicates that the association between 
open sky and pedestrian volume may be context-sensitive. Additional 
studies are warranted to investigate the complex effect of open sky on 
walking behaviors. 

Fig. 3. Pedestrian volume estimated from street view images: mean pedestrian volume in a) each street segment, and b) fishnet grid.  

Table 3 
Results of regression models for predicting pedestrian volume (Fishnet = 500 m 
× 500 m, N = 1322).  

Model predictors OLS SLM 

Coef. (SE) p-Value Coef. (SE) p-Value 

Micro-scale built 
environment     

Greenery 1.306 
(0.515) 

0.010* 1.156 
(0.456) 

0.011* 

Open sky 1.573 
(0.637) 

0.013* 2.231 
(0.567) 

<0.001*** 

Roadway 0.355 
(0.900) 

0.675 0.872 
(0.798) 

0.275 

Sidewalk 17.735 
(4.130) 

<0.001*** 11.056 
(3.701) 

0.003** 

Macro-scale built 
environment     

Building floor area 0.001 
(0.000) 

<0.001*** 0.001 
(0.000) 

<0.001*** 

Mix index 1.047 
(0.112) 

<0.001*** 0.733 
(0.100) 

<0.001*** 

Street intersection 0.010 
(0.002) 

<0.001*** 0.006 
(0.002) 

<0.001*** 

Street centrality 0.001 
(0.000) 

0.011* 0.001 
(0.000) 

0.076 

Residential POIs 0.004 
(0.003) 

0.120 0.002 
(0.002) 

0.507 

Enterprise POIs − 0.001 
(0.000) 

0.005** − 0.001 
(0.000) 

0.012* 

Commercial POIs 0.001 
(0.000) 

<0.001*** 0.001 
(0.000) 

<0.001*** 

Public service POIs 0.006 
(0.002) 

0.003** 0.003 
(0.002) 

0.049* 

Entertainment POIs − 0.003 
(0.002) 

0.131 − 0.002 
(0.002) 

0.373 

Transit stops 0.088 
(0.012) 

<0.001*** 0.072 
(0.011) 

<0.001*** 

Micro R2 0.167  0.506  
Micro and Macro R2 0.493  0.597  
LL − 1955  − 1831  
AIC 3939  3694  

Note: Coef. = Coefficient; SE = Standard error; LL = Log-likelihood; AIC =
Akaike information criterion. 

* p < 0.05. 
** p < 0.01. 
*** p < 0.001. 
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Third, we found that both micro- and macro-scale built environment 
variables have independent effects on pedestrian volume. Built envi-
ronment characteristics related to walking behaviors have been defined 
and measured differently by different researchers (Barnett et al., 2017; 
Day, 2016; Saelens & Handy, 2008). Conceptually, macro-scale built 
environment characteristics are largely related to proximity to potential 
pedestrian destinations. For example, a higher urban density, a more 
diverse land use mix, better connected streets, and more POIs all make 
potential pedestrian destinations closer and more accessible by walking. 
By comparison, micro-scale built environment characteristics relate to 
the qualities of the walking environment (e.g., aesthetics and safety). 
Our results suggest that wider sidewalks, more street-level vegetation 
along the streets, and higher levels of open sky can create a pleasant and 
safe walking environment and stimulate walking. Overall, pedestrian 
volume is linked with both the macro-scale built environment charac-
teristics and micro-scale streetscape features. 

4.1. Policy implications 

Walking is arguably the most popular and feasible form of physical 
activity for the vast majority of the population (Eyler et al., 2003; Lee & 
Buchner, 2008). Urban residents can relatively easily integrate walking 
into their daily lives for various purposes, for example, transportation, 
recreation, and exercise. Promoting collective walking behavior is the 
key to improve urban vitality, and it also engenders many social, eco-
nomic, and environmental benefits (Lee et al., 2012; Sallis et al., 2012). 
According to our major findings with an urban context in Shanghai, 
China, relatively dense and diverse urban development may boost 
pedestrian volume. Well-connected street network design (i.e., in-
tersections and centrality) is crucial for pedestrian activity. Urban areas 
with more transit stops also tend to have more pedestrians. In regard to 
accessibility of destinations, urban areas with more commercial and 
public service destinations can stimulate street-level walking behaviors. 
Urban design strategies, such as providing more greenery, openness and 
sidewalk at street level, are also important to increase pedestrian vol-
ume. Therefore, urban planners and designers should make efforts to 
create pedestrian-oriented urban environment that have abundant des-
tinations (e.g., commercial, and public service), mixed use, well- 
connected street network, and adequate greenery, openness, and side-
walk at street level. In summary, policymakers and practitioners should 
consider both the macro- and micro-scale characteristics of the built 
environment to create pedestrian-friendly and healthy cities at popula-
tion level. 

However, some caveats should be noticed. Urban area with more 
enterprises is linked with fewer pedestrians, and residential destinations 
and entertainment spots (i.e., open space, parks) are not linked to 
pedestrian volume in Shanghai. However, different findings were re-
ported; higher residential density is linked to walking (Forsyth et al., 
2007), so are parks and open space (Giles-Corti et al., 2005; Zhai et al., 
2021). The inconsistency in the findings may be due to different urban 
contexts. It may be ineffective to stimulate pedestrian volume by 
increasing residential destinations and enterprises in the major cities in 
China. Furthermore, it is street-level greenery and openness rather 
public open space and parks that play important roles to stimulate street- 
level walking behaviors. 

4.2. Limitations 

The following limitations need to be noted. First, although pedes-
trian volume was automatically extracted at the street level, we aggre-
gated and averaged the data for 500 m × 500 m grids. In addition, other 
street-level factors are also measured and averaged for each grid. To 
some extent, aggregating pedestrian volume at the grid level will lead to 
ecological fallacy and loss of information (Kwan, 2018). Nevertheless, 
we used the fishnet grid rather than individual street segments as the 
unit of analysis because macro-scale built environment characteristics 

are difficult to assign to individual streets. 
Second, street view images were collected at different hours (e.g., 

peak hours vs. non-peak hours) and different days in a week (e.g., 
weekday vs. weekend) which is able to impact pedestrian volume. 
Because of data attributes of Baidu Street View, we are currently unable 
to handle the potential temporal fluctuation of pedestrian volumes in 
these images. Third, only a few aspects of street quality were considered. 
However, other walking-influencing aspects of street quality (e.g., 
comfort, safety, aesthetics) were not explored in the current study. 
Additional studies are needed to explore the effects of other aspects of 
street quality on walking behavior (Bornioli et al., 2019; Zhang et al., 
2018). 

Fourth, personal factors (e.g., age, income), which significantly in-
fluence walking, were not examined (Adkins et al., 2017; Barnett et al., 
2017; Kerr et al., 2007). Finally, as this was a cross-sectional study, no 
causality can be established. Longitudinal or natural experiment studies 
are needed to obtain more rigorous evidence of the effect of built 
environment characteristics on pedestrian volume. 

5. Conclusion 

This study is the first to systematically explore the association be-
tween the built environment and pedestrian volume at a large spatial 
scale. Pedestrian volume was retrieved using an innovative method that 
integrates street view data with machine learning technique. Micro- 
scale built environment characteristics, such as greenery, open sky, 
and sidewalk, were found to be associated with pedestrian volume. 
Micro-scale built environment characteristics (i.e., the 5Ds framework: 
density, diversity, design, destination accessibility, and distance to 
transit) were also found to be associated with pedestrian volume. Thus, 
to improve walking behaviors through urban planning and design, 
policymakers should focus on both the micro- and macro-scale built 
environment. 
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