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Abstract: The coronavirus disease 2019 pandemic has stimulated intensive research interest in its
transmission pathways and infection factors, e.g., socioeconomic and demographic characteristics,
climatology, baseline health conditions or pre-existing diseases, and government policies. Meanwhile,
some empirical studies suggested that built environment attributes may be associated with the
transmission mechanism and infection risk of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2). However, no review has been conducted to explore the effect of built environment
characteristics on the infection risk. This research gap prevents government officials and urban
planners from creating effective urban design guidelines to contain SARS-CoV-2 infections and
face future pandemic challenges. This review summarizes evidence from 25 empirical studies and
provides an overview of the effect of built environment on SARS-CoV-2 infection risk. Virus infection
risk was positively associated with the density of commercial facilities, roads, and schools and
with public transit accessibility, whereas it was negatively associated with the availability of green
spaces. This review recommends several directions for future studies, namely using longitudinal
research design and individual-level data, considering multilevel factors and extending to diversified
geographic areas.

Keywords: SARS-CoV-2; COVID-19; built environment

1. Introduction
1.1. Coronavirus Disease 2019

It has been more than one year since the outbreak of coronavirus disease 2019
(COVID-19) in December 2019, and it has spread to most countries and regions worldwide.
The outbreak was announced as a public health emergency on 30 January 2020 and then
a global pandemic on 11 March 2020 by World Health Organization (WHO) [1]. As of
21 February 2021, more than 110.74 million cases have been confirmed globally, includ-
ing over 2.45 million deaths [2]. The COVID-19 pandemic has become one of the most
catastrophic global health crises in the last several decades.

The three major transmission mechanisms of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) are large droplet transmission, aerosol transmission, and
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fomite transmission [3,4]. Although many social distancing measures, such as limiting
large group gathering and mandatory mask-wearing requirement have been enforced
and several vaccines have been developed, there is no effective treatment to cure infected
individuals. COVID-19 has significantly changed daily life and challenged the global
public health system and social economic development [5,6].

1.2. Major Factors Associated with SARS-CoV-2 Infection

The COVID-19 pandemic has stimulated intensive research interest of scholars from
various disciplines in its transmission pathways and infection factors. Reviews have
identified several critical factors associated with SARS-CoV-2 transmission and infection,
including socioeconomic and demographic characteristics (e.g., gender, ethnicity, age,
and household income) [7–9], climatology parameters (e.g., temperature, humidity, wind,
and air pollution) [10–12], baseline health conditions or pre-existing diseases (e.g., kidney
and cardiovascular diseases) [13], and government policies (e.g., social distancing and
lockdowns) [14,15].

Built environment can be defined as human-made surroundings, which provide space
and place for human activity [16]. As a key sphere of socioecological framework, built
environment factors significantly affect long-term health outcomes, and such effects have
been identified across different social and urban contexts [17,18]. Evidence also supports
that a well-designed built environment can improve human health via several major
pathways, e.g., promoting physical activity, reducing stress, increasing social contacts,
and reducing pernicious environmental exposures (e.g., air pollution, sanitation, and
noise) [19–21]. Several built environment factors that influence health have been identified
in previous reviews [19,22–24]. These factors can be summarized in a five-dimensional
(5D) model framework including density, diversity, design, destination accessibility, and
distance to transit [22].

Circumstantial evidence supports that built environment characteristics may be re-
lated to the transmission of coronavirus infection. In previous existing literature, a large
number of studies have revealed the relationship between built environment and the
transmission mechanism and infection risk of SARS-CoV-2 because the built environment
affects how people move around and the human-to-human contact in outdoor and indoor
environments [25–27]. For example, a higher density of service facilities (e.g., commercial
facilities, schools, hospitals) may increase the risk of close contact, thus leading to the
person-to-person SARS-CoV-2 transmission. In addition, public transit passengers may
have high infection risk due to prolonged virus exposure within the enclosed carriages.
However, evidence related to the effect of special built environment characteristics on the
SARS-CoV-2 infection risk is inconclusive. For instance, people who lived in high-density
areas may have more social contacts in their daily lives and thus a high risk of infection [25].
Whereas cities and nations with a higher population density were found to implement
stricter regulations, which effectively alleviated the spread of the virus [28]. No review
has summarized the role of the built environment in the COVID-19 pandemic. This gap in
knowledge about built environment characteristics and to what extent they affect SARS-
CoV-2 infection should be addressed, as a lack of knowledge may prevent government
officials and urban planners from creating effective guidelines and urban environments to
contain SARS-CoV-2 infections and face future pandemic challenges.

1.3. Our Contributions

Given the research gaps discussed in Section 1.2, this review aimed at summarizing
the existing evidence and providing an overview of the effect of built environment on
SARS-CoV-2 infection during the COVID-19 pandemic. First, we identified the critical
built environment factors that affect SARS-CoV-2 infection by comprehensively reviewing
empirical studies on this topic. Second, we explored the potential mechanisms by which
the built environment characteristics affect SARS-CoV-2 infection. Our study may help to
identify high-risk urban areas and thus develop effective strategies to reduce SARS-CoV-2
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infection via targeted interventions. Our study may also contribute to providing urban
planning guidelines to cope with future pandemics.

2. Methods

This research was conducted based on the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) criteria [29]. We delivered a systematic search using
meta-database, including PubMed, Scopus, Web of Science, and preprint servers (medRxiv,
bioRxiv, and arXiv) from inception to 3 June 2021. The search adopted the following
keywords in the article title or abstract for relevant studies: (“built environment” OR
“urban environment” OR “neighborhood” OR “neighborhood” OR “physical environment”
OR “land use” OR “proximity” OR “distance to destination” OR “population density” OR
“urban density” OR “building density” OR “green space” OR “greenery” OR “parks”) AND
(“COVID-19” OR “SARS-CoV-2” OR “novel coronavirus” OR “2019-nCoV” OR “nCoV”
OR “novel beta-CoV” OR “novel betacoronavirus”).

The following three selection criteria were used to identify the eligibility of the re-
trieved studies for inclusion in the current review:

1. Examined the association between COVID-19 and certain aspects of the built environ-
ment;

2. Were written in English; and
3. Were not letters, notes, opinions, commentaries, or reviews.

We first screened the title and abstracts to exclude irrelevant studies and then evaluated
the full-text articles to remove those that failed to meet the above criteria. Our final review
database contained 25 eligible full-text articles. The PRISMA diagram is displayed in
Figure 1.
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3. Results
3.1. Study Characteristics

We reviewed 25 studies included in qualitative synthesis. Appendix A summarizes
the following characteristics from each included sample study: authors, country, research
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design, geography unit, sample size, COVID-19 metrics, built environment metrics, data
analysis method, and major results. “COVID-19 metrics” refers to the measurements
related to SARS-CoV-2 infection, such as the case number and incidence. The top two
studied countries were China and the United States with 10 studies, respectively; four
studies were conducted in Europe and South Asia, including England (n = 2), Germany
(n = 1), and Bangladesh (n = 1); and one study was conducted in multiple countries. Except
for one longitudinal study, all studies followed a cross-sectional study design. Most of
the studies were performed at the nationwide or city level, whereas some studies chose a
smaller geographical unit, such as the zip code or neighbourhood.

3.2. Built Environment Metrics

The built environment metrics assessed by these studies included urban density,
land-use mixture, connectivity, accessibility to public transit, accessibility to destinations,
availability of green space, and other surrogate measures, which are largely in line with
the 5D framework as Figure 2. Considerable heterogeneity within included studies was
found in terms of the selection and definition of built environment metrics, which hindered
the pool effects estimation. In brief, nine built environment metrics were assessed in the
studies. There were also various measuring methods for defining composite indexes, for
example, urban density and land-use mixture. The most widely studied built environment
characteristics, which were included in at least six studies, were urban density (including
population density, building density, and residential density), commercial facility and
hospital density, availability of green space, and accessibility to public transit. The data
source of these metrics was various, including census data, remote sensing data, open-
source urban land-use data, Google Street View images, and other public records.
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3.3. COVID-19 Metrics

The COVID-19 metrics were measured in four aspects, namely the number of COVID-19
confirmed cases (n = 9), COVID-19 incidence (the ratio of COVID-19 cases divided by
population size) (n = 14), COVID-19 cluster size (the number of groups of COVID-19 cases)
(n = 1), and basic reproductive number (a function to describe the virus transmissibility
among population) (n = 1). The confirmed COVID-19 case data in these studies were
mainly obtained from government statistics.

3.4. Associations between the Built Environment and SARS-CoV-2 Infection

Table 1 lists the directions of associations between each built environment variable
and SARS-CoV-2 infection in all 25 selected studies (see more details in Table A1). A study
might report multiple associations for the same built environment–infection association
because of different statistical tests and adjusted covariates. The association directions
were coded as “+,” “−,” or “0;” “+” denotes a statistically significant positive association;
while “−” represents a statistically significant negative association; and “0” indicates no
significant association. Table 2 summarizes the number of each association from all studies.
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Table 1. Associations between built environmental characteristics and COVID-19 outcomes among all 25 selected studies.

No. References Urban
Density

Land-Use
Mixture

Availability of
GREENSPACE

Road
Density

Accessibility
to Public
Transit

Accessibility
to Intercity

Train Station

Density of
Commercial

Facilities

Density
of Hos-
pitals

Density of
Schools

1 Li, Peng [30] 0 + 0

2 Yip, Huang [31] +/0 0/0 +/+/+/0 0/0

3 Credit [32] − 0

4 DiMaggio,
Klein [33] +/+ 0

5 Hamidi,
Sabouri [34] +/0

6 Gaskin,
Zare [35] 0 0

7 Hu, Yue [36] +

8 Huang,
Kwan [37] −/+/+ - +

9 Jin, Leng [38] + +/+/+/+/+ + +

10 Johnson,
Hordley [39] 0 −

11 Klompmaker,
Hart [40] −

12 Li, Zhou [41] 0 0 0 0 + +

13 Liu [42] −/0 − +

14 Hamidi,
Ewing [43] -

15
Ibrahim,

Mohammed
Eid [28]

0

16 Nguyen,
Huang [44] +

17 Rahman,
Zafri [45] 0

18 Scarpone,
Brinkmann [46] 0

19 Ma, Li [47] + + + +

20 You, Wu [48] + + -

21 You and
Pan [49] 0 −

22 Li, Ma [50] + +

23 Tribby and
Hartmann [51] − 0

24 Kan, Kwan [52] 0 + −
25 Sy, White [53] 0

Table 2. Summary of associations between built environmental factors and coronavirus disease
2019 outcomes.

Built Environment Factors Positive (+) Negative (−) Inconclusive (0)

Factors with strong evidence
Commercial facility density (+) 11 0 2
School density (+) 2 0 1
Road density (+) 2 0 2
Accessibility to public transit (+) 3 0 3
Availability of green space (−) 2 4 1
Factors with weak evidence
Urban density 8 5 11
Hospital density 3 1 4
Land-use mixture 1 1 1
Accessibility to intercity train
stations 1 0 2

Note: Built environment factors with strong evidence are marked with a “+” or “−” in parentheses to show the
direction of the association. Strong evidence means that the number of positive associations was greater than or
equal to the total amount of negative or inconclusive associations, or negative associations was greater than or
equal to the total amount of positive or inconclusive ones.
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Following previous reviews [54,55], a built environment characteristic will be identi-
fied as having strong evidence if the amount of positive associations was greater than or
equal to the sum of its negative or inconclusive associations (“+” ≥ “−/0”) or amount of
negative associations was greater than or equal to the sum of its positive or inconclusive
associations (“−” ≥ “+/0”). As shown in Table 2, there was strong evidence for positive
associations of virus infection risk with commercial facility density (11 “+” vs. 2 “−/0;”
84.6%), elementary and middle school density (2 “+” vs. 1 “−/0;” 66.7%), accessibility
to public transit (3 “+” vs. 3 “−/0;” 50.0%), and road density (2 “+” vs. 2 “−/0;” 50.0%).
There was also strong evidence for a negative association between infection risk and avail-
ability of green space (4 “−” vs. 3 “+/0;” 57.1%). The evidence for associations of infection
risk with other built environment factors, including urban density, hospital density, and
accessibility to intercity train stations, was weak.

4. Discussion

Twenty-five studies were selected in the current review. Although the sample size
was limited, our review still provides some conclusions and insights into the potential
influences of built environment characteristics on SARS-CoV-2 infection risk. Overall,
the commercial facility density, school density, accessibility to public transit, and road
density were positively associated with SARS-CoV-2 infection, whereas availability of
green space was negatively associated with it. Evidence for some important built environ-
ment factors was inconclusive, such as urban density and land-use mixture, which were
proven to be related to long-term active travel behaviours and health outcomes of urban
residents [56–58].

4.1. Major Findings
4.1.1. Commercial Facility Density

In this review, the strongest evidence was found for the association between commer-
cial facilities and SARS-CoV-2 infection risk. Eleven out of 13 studies (84.6%) reported
positive associations. One plausible explanation is that people who lived in neighbour-
hoods with more commercial destinations and services are more likely to use these facil-
ities [21,59,60], therefore their risk of exposure to the virus increased [30,38]. Besides, in
some recreation and service facilities, such as restaurants, hotels, and bars, people tend
to take off their masks to talk, drink, and dine [38]. Furthermore, a large number of the
commercial locations are designed as indoor spaces with inadequate ventilation, which
can easily become high-risk places because the spread of the virus is intensified in confined
spaces [41]. Hence, urban areas with intensive commercial facilities may be confronted
with a higher virus infection risk. Some social distancing measures, for example, closure
of unnecessary commercial destinations and/or controlling the number of people in such
destinations, are needed.

4.1.2. School Density

Three studies investigated the association between school density (e.g., schools of
different categories (elementary and middle schools)) and infected cases. Two studies in
China showed a positive association [38,47], whereas one study in the U.S. revealed an
insignificant association [33]. The potential mechanism linking school density and infection
risk is that many teachers and students gather in classrooms and frequently interact with
each other at a short distance in class and in after-class activities. In this setting, long and
intimate contact in a closed environment may significantly increase virus transmission [61].

Given that many schools have been conducting online teaching rather than face-to-face
teaching, the teaching mode may have also modified the observed results. Thus, more
studies are needed to explore the relationship between school density, teaching mode, and
infection risk. School density may also be a proxy for other constructs. For instance, the
number of schools may be a measure of population density or socioeconomic status (SES)
of an area because public schools are funded by local tax revenues in some countries, e.g.,
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China and U.S. [33]. Although the infection risk is more pronounced in areas with a high
school density, the causal relationship is still uncertain. Therefore, the potential influence
of school density needs to be further investigated.

4.1.3. Road Density

Two out of four studies showed that road density is positively associated with virus in-
fection [36,47]. A neighbourhood with a higher road density may have higher mobility and
pedestrian activities [62] and consequently a higher risk of virus exposure and transmission.
However, the results of two studies conducted in Bangladesh and China showed that road
density had no significant effect on SARS-CoV-2 incidence [41,45]. This might have been
due to the local social restrictions established to contain the rapid spread of COVID-19. For
example, Wuhan, China, implemented a total lockdown policy during the data collection
period, which sharply decreased the traffic flow and pedestrian activities [41].

4.1.4. Accessibility to Public Transit

Three out of six studies showed positive associations between accessibility to public
transit and virus infection [37,38,42]. Public transit conveys many passengers for daily
commuting or other activities in confined and often crowded settings. Given the potential
for virus exposure among public transit passengers, the risk of virus transmission is
substantial [63].

However, one study revealed a more complex relationship and found that the impact
of public transit on the prevalence of COVID-19 was significant only when social distancing
measures were relaxed [31]. People may mitigate the potential virus infection risk associ-
ated with public transit by using private vehicles, staying home, or wearing masks. The
demand for public transit significantly decreased during the pandemic [64]. Furthermore,
many cities implemented compulsory measures for public transit passengers (e.g., wearing
masks and maintaining social distancing) [65]. Thus, the influence of accessibility to public
transit may vary according to different pandemic stages, social distancing measures, and
social contexts.

4.1.5. Availability of Green Space

Four out of seven studies showed the negative association between the availability of
green space and COVID-19 incidence [42,49,66,67]. There are two possible explanations
for this result. First, it is widely recognized that green space can promote long-term physi-
cal and mental health [67,68] by supporting physical activity and providing stress relief,
which may help to boost the immune system against the virus. Second, air pollution may
exacerbate the SARS-CoV-2 infection risk [69], yet green space can reduce exposure to air
pollution, thereby decreasing the virus infection risk [67]. Other studies also found that
green space usage increased during the pandemic [70], and the availability of green space
decreases racial disparity in virus infection rates [71]. However, two studies suggested a
positive association between green space and virus infection risk [48,52]. Some researchers
believe that green spaces may promote close contact and increase infection risk, although
the outdoor infection risk is low. People may also be infected when using public fitness
facilities and public toilets in green spaces, which involve physical touch. Overall, with ad-
equate precautions (e.g., controlling the number of users in green spaces, social distancing,
and hygiene), the provision of green space may be an effective urban design strategy to
face the challenge from the COVID-19 pandemic and future pandemic crises.

4.1.6. Urban Density

Urban density, which was often assessed by population density, building density,
or residential density, was the most intensively investigated factor when discovering the
relationship between built environment characteristics and COVID-19 incidence. One of
the potential explanations is that urban density is commonly positively associated with the
rates of infection during pandemics, and population-related data are easier to obtain [34].
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The evidence for urban density is not conclusive. Only eight out of 24 (33.3%) studies
found that urban density was positively associated with COVID-19 incidence. This may
account for that in high-density areas, e.g., large cities or urban centres, people may have
more social contacts, which may lead to a higher infection risk compared with that in
low-density areas. However, five studies reported a negative association and 11 reported
an insignificant association. Such mixed results may be explained by three reasons. First,
some affluent and high-density cities, especially those in developed countries, have high-
quality and accessible health care systems [34,72]. Second, the social distancing policies in
high-density areas may be taken more seriously and managed strictly by the government
and urban residents, thereby leading to a lower infection rate in these areas [28]. Third,
the modifiable areal unit problem [72], i.e., using different spatial scales of analytical units,
such as a community, town, county, or census tract, when calculating the area-based urban
density or infection rate, may lead to different results in different studies [72].

Therefore, although urban density is arguably the most important built environment
characteristic and planning parameter, little is known about its effect on SARS-CoV-2
infection. More studies with rigorous research designs are needed on this topic.

4.1.7. Hospital Density

The hospital density results were inconsistent. Three out of eight studies reported
positive associations between hospital density and COVID-19 incidence [38,41,47]. Hos-
pitals may be a hot spot for virus transmission because of close person-to-person contact
and crowded indoor environments [73]. Many people, including patients, visitors, and
healthcare staff, were infected in hospitals due to a lack of understanding about SARS-CoV-
2 infection and a lack of appropriate protection during the initial COVID-19 outbreak in
China [41]. However, one study in China showed inverse associations between hospital
density and COVID-19 incidence [48]. The authors argued that patients can be scattered
when there are more hospitals in one area, which may reduce the risk of transmission.
Four studies found no significant relationship between hospital density and COVID-19
incidence [30–32]. Overall, the inconsistent evidence from these studies indicated that the
effect of hospital density on COVID-19 is confounded by other factors, such as the health
conditions of residents. Hospital density may also be a proxy for other latent constructs,
such as the SES of an area or medical care conditions.

4.2. Recommendations for Future Studies

Future studies should address the following four limitations identified in this review.
First, all studies covered in this review, except for one, used a cross-sectional study

design, which prevented us from establishing any causality. A major issue in cross-sectional
research design is the residential self-selection bias [19,74]. This means that people who
have a predisposition for physical activity and a healthy lifestyle may prefer to choose neigh-
bourhoods with space or facilities supporting physical activity and healthy lifestyles [19].
With such bias, observed built environment–health associations may be explained by po-
tential individual attitudes and preferences for physical activity and healthy lifestyles and
failed to infer a true causal relationship. Thus, the impact of built environment charac-
teristics on health outcomes, including SARS-CoV-2 infection risk, can be overrated in
cross-sectional studies design as well. More controlled and longitudinal studies are needed
to determine robust and long-term associations between built environment characteristics
and COVID-19 incidence [44,75]. The availability of a suitable control group in a prospec-
tive longitudinal study will help us to establish a natural experiment by ruling out the
self-selection bias [75].

Second, owing to the limited COVID-19 pandemic information released, the incidence
and infection data were often offered as aggregated at the county or city level. All of the
selected studies in this review also measured built environment characteristics at the county
or city level. Such aggregated data are subject to ecological fallacy, which means that we
cannot infer the outcome of individuals based on group information [76]. In addition, there
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are notable variations in built environment exposure for people living in the same county
or city [60]. In future research, measuring of individual infection risk and corresponding
individual-level built environment exposure is warranted to address this limitation.

Third, besides the built environment, social, cultural, and behavioural factors may also
influence the spread of COVID-19, such as social norms, social distancing policies, individ-
ual mobility, and behaviours [49,66,67]. Such factors were often neglected in recent studies
of built environment–infection associations. According to the socioecological framework,
SARS-CoV-2 infection risk is affected by multilevel factors, such as individual (e.g., sex, age,
and attitudes), behavioural (e.g., mobility and social interaction), social environment (e.g.,
family and friends), built environment, natural environment (air pollution, humid, and
temperature), community (e.g., norms of wearing masks), and public policy (e.g., social
distancing measures) factors. These multilevel factors may interact with each other and
make the impact of the built environment on infection risk more complex. Therefore, it
is necessary to control such covariates or to investigate the interactions between the built
environment and the social environment in future studies.

Fourth, except for one multinational study, the remain studies selected in the current
review were conducted in only five countries. Given the impact of the COVID-19 pan-
demic in almost all countries and the significant variations among the social and built
environments across countries, additional studies covering more countries are required to
allow cross-country comparisons. Research covering multiple countries in a single study is
strongly recommended. The observation of homogeneous built environment–infection as-
sociations in different geographic settings can strengthen the generalizability and causality
of the results.

5. Conclusions

This review summarizes recent evidence regarding the associations between various
built environment factors and SARS-CoV-2 infection risk. Areas with higher infection
risks often feature dense commercial facilities, schools, and street networks, fewer green
spaces, and accessible public transit. The evidence for some important built environment
characteristics (e.g., urban density, green space, and land-use mixture) remains mixed.
Understanding how built environment affects SARS-CoV-2 infection risk is critical to
control the COVID-19 pandemic. This review provides valuable recommendations for
policymakers and urban planners in post-pandemic planning and future urban planning
practices. To address the barriers and limitations in the literature, future studies should
use a longitudinal research design, focus on long-term effects, accurately measure both
infection risk and built environment exposure, and cover diverse regions.
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Appendix A

Table A1. Summary of study sample characteristics, study design, built environmental metrics, COVID-19 metrics, data analysis method, and results.

No. References Country Study Design Geographical
Unit

Sample
Size (n)

COVID-19
Metrics Built Environment Metrics Data Analysis Results

1 Li, Peng [30] China Cross-sectional
1000 m buffer of

COVID-19
cluster

639 Cluster size

1. Building density
2. Number of commercial

facilities
3. Number of medical services

Structural equation
model

Commercial vitality has a significant
impact on the number of confirmed cases

in an infectious cluster.

2 Yip, Huang
[31] China Cross-sectional Town Planning

Unit (TPU) 154 Case
number

1. Distance/number to clinics
2. Distance/number to

restaurants
3. Distance/number to markets
4. Distance/number to metro

stations
5. Population density

1. Cox proportional
hazards regression
2. Ordinary least

squares
3. Negative binomial

regression

1.The data is divided into two phases
before (Phase 1) and during the social

distancing measure was relaxed (Phase 2).
In Phase 1, clinics and restaurants are

more likely to influence the prevalence of
COVID-19. In Phase 2, public market,
public transportation, and the clinics

influence the prevalence of COVID-19.
2. In Phase 1, the areas of tertiary planning
units with more restaurants are found to

be positively associated with the period of
the prevalence of COVID-19. In Phase 2,
restaurants and public markets induce
long time occurrence of the COVID-19.

3.In Phase 1, restaurant and public
markets are the two built environments
that influence the number of COVID-19
confirmed cases. In Phase 2, the number
of restaurants is positively related to the

number of COVID-19 reported cases.

3 Credit [32] US Cross-sectional Zip code - Incidence 1. Population density
2. Hospital accessibility score Ordinary least squares

Population density is negatively
associated with COVID-19 infection rates

at the neighbourhood-level.

4 DiMaggio,
Klein [33] US Cross-sectional Zip code 177 Case

number

1. Population density
2. Housing density
3. School density

Bayesian hierarchical
Poisson spatial models

Risk was approximately doubled by
environmental characteristics such as

population and housing density.

5 Hamidi,
Sabouri [34] US Cross-sectional County 913 Incidence Activity density (population +

employment)
Structural equation

model

After controlling for metropolitan
population, county density is not

significantly related to the infection rate.

6 Gaskin,
Zare [35] US Cross-sectional County 3132 Case

number

1. Population density
2. Distance/number to airports

3. Number of train stations

1. Negative binomial
regressions

2. Cox regressions
The number of COVID-19 cases is

positively related to proximity to airports.

7 Hu, Yue [36] US Cross-sectional Town 357 Incidence Road density 1. Spatial lag model
2. Spatial error model

Road density is significant explanatory
variables.
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Table A1. Cont.

No. References Country Study Design Geographical
Unit

Sample
Size (n)

COVID-19
Metrics Built Environment Metrics Data Analysis Results

8 Huang,
Kwan [37] China Cross-sectional TPU 291 Incidence

1. Population density
2. Residential density

3. Building height
4. Transport facility density

5. Land-use diversity

1. Global Poisson
regression

2. Geographically
weighted Poisson

regression

1. Private residential density, transport
facility density and building height have

positive association with COVID-19
incidence.

2. Population density and land-use
diversity have negative association with

COVID-19 incidence.

9 Jin, Leng
[38] China

Cross-sectional
with

case-control
Neighbourhood

4329 (ex-
periment)

17,316
(control)

Case
number

1. Number of restaurants
2. Number of shopping centres

3. Number of hotels
4. Number of living facilities

5. Number of recreational
facilities

6. Number of public transits
7. Number of educational

institutions
8. Number of health service

facilities

Multivariable logistic
regression models

1. Having more restaurants, shopping
centres, hotels, living facilities,

recreational facilities, public transits,
educational institutions, and health
service facilities was associated with
significantly higher odds of having

COVID-19 cases in a neighbourhood.
2. The associations for restaurants, hotels,
recreational, and education facilities were

more pronounced in cities with fewer
than six million people than those in

larger cities.

10
Johnson,
Hordley

[39]
England Cross-sectional Local authority 299 Incidence 1. Availability of greenspace

2. Population density
Linear mixed effect

models

After accounting for known mechanisms
behind transmission rates, we found that

park use decreased residual pre-peak
case rates, especially when greenspace

was low and contiguous.

11 Klompmaker,
Hart [40] US Cross-sectional County 3089 Incidence NDVI Negative binomial

mixed models

1. An increase of 0.1 in NDVI was
associated with a 6% decrease in

COVID-19 incidence rate.
2. Associations with COVID-19 incidence

were stronger in counties with high
population density and in counties with

stay-at-home orders.

12 Li, Zhou
[41] China Cross-sectional Community 1025 Incidence

1. Hospital density
2. Commercial facility density

3. Subway station density
4. Land-use mixture

5. Road density
6. FAR

1. Ordinary least
squares model

2. Geographically
weighted regression

model

1. The distribution and density of major
hospitals exerted a positive association

with the epidemic situation.
2. The density of commercial facilities
was the most prevalently distributed
factor over the city that presented a

positive association with the epidemic
severity.

13 Liu [42] China Cross-sectional City 312 Case
number

1. Subway lines length
2. Per capita greenspace

3. Population density

Ordinary least squares
model

1. Subway was positively connected with
the virus transmission.

2. Population density was negatively
associated with the spread of COVID-19

at the early stage of the epidemic.
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Table A1. Cont.

No. References Country Study Design Geographical
Unit

Sample
Size (n)

COVID-19
Metrics Built Environment Metrics Data Analysis Results

14 Hamidi,
Ewing [43] US Longitudinal County 1165 Incidence Population density Multilevel Linear

Model

After controlling for metropolitan size
and other confounding variables, county

density leads to significantly lower
infection rates.

15
Ibrahim,

Mohammed
Eid [28]

Multiple
conutries Cross-sectional Country 50 Case

number Population density Stringency index
model

Population density was found to be not a
significant contributor in controlling
COVID-19 epidemic in the very first

month of spread.

16 Nguyen,
Huang [44] US Cross-sectional Zip code 30556 Case

number Land-use mixture Poisson regression
models

Indicators of mixed land use was
connected with higher COVID-19 cases.

17 Rahman,
Zafri [45] Bangladesh Cross-sectional District - Incidence Road density

1. Ordinary least
squares model

2. Spatial lag model
3. Spatial error model4.

Geographically
weighted regression

model

Road density had no significant influence
on the occurrence rates of COVID-19.

18
Scarpone,

Brinkmann
[46]

Germany Cross-sectional County 401 Incidence Access to long-distance train
stations

1. Geospatial analysis
heuristic

2. Geographical
interpretation

3. Bayesian machine
learning analysis

4. Generalised
Additive Model

There appeared to be no significant
observable partial dependence for

long-distance train stations.

19 Ma, Li [47] China Cross-sectional Town 2994 Incidence

1. Density of elementary and
middle schools

2. Commercial facility density
3. Density of road intersections

4. Hospital density

1. Random forest
approach

2. Bivariate local
indicators of spatial

association

The density of convenience shops,
supermarkets, and shopping malls was

one of the most important factors to
infection cases.

20 You, Wu
[48] China Cross-sectional District 13 Incidence

1. Population density
2. Public green space density

3. Hospital density

1. Pearson correlation
analysis

2. Spatial lag model
3. Spatial lag model

1. Increasing population density and
public green space density were

associated with an increased COVID-19
morbidity rate.

2. Increasing hospital density was
associated with a decreased COVID-19

morbidity rate.

21 You and
Pan [49] US Cross-sectional County 989 Case

number

1. Percentage of Urban
Vegetation

2. Population density

Path analysis model
Each 1% increase in the percentage of
urban vegetation will lead to a 2.6%

decrease in cumulative COVID-19 cases.
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Table A1. Cont.

No. References Country Study Design Geographical
Unit

Sample
Size (n)

COVID-19
Metrics Built Environment Metrics Data Analysis Results

22 Li, Ma [50] China Cross-sectional City 255 Incidence 1. Centrality of railway stations
2. Population density

Mixed geographically
weighted regression

model

The associations are positive for the
density of the POIs around railway

stations.

23
Tribby and
Hartmann

[51]
England Cross-sectional ZIP code 144 Incidence 1. Population density

2. Density of park

1. Ordinary least
squares model

2. Geographically
weighted regression

model

Population per square kilometre was
negatively associated with case rates.

24 Kan, Kwan
[52] China Cross-sectional Large Street

Block Group 1622 Case
number

1. Density of commercial land
2. NDVI

3. Population density
Space-time scan

statistic

More green spaces and lower commercial
land density are linked to a higher risk
for the residences of confirmed cases.

25 Sy, White
[53] US Cross-sectional County 1151

Basic repro-
ductive
number

Population density Linear mixed models

Counties with greater population density
have greater rates of transmission of
SARS-CoV-2, likely due to increased

contact rates in areas with greater density.
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