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A B S T R A C T   

Green development is essential for improving urban land use efficiency (ULUE) as it seeks to optimize resource 
utilization and minimize waste and pollution. However, a long-term evolution of ULUE and its determinants 
under the context of green development are less discussed in existing studies. Drawing on remote sensing and 
statistical data and utilizing the super efficiency slack-based model (SBM) and the geographically and temporally 
weighted regression (GTWR) model, this study evaluates green development-oriented ULUE and its spatiotem-
poral associations with determinants across 284 cities and eight economic zones in China from 2005 to 2019. We 
found that the green development-oriented ULUE in China generally increased in 15 years (from 0.404 to 0.55), 
with higher levels in coastal and northwestern regions than in central regions. Besides, per capita GDP, in-
vestment in technology and science, and degree of openness generally contributed to ULUE (over 75% obser-
vations showed positive coefficients), while investment in real estate had a negative impact on ULUE. The impact 
of industrial structure on ULUE experienced a transition from positive to negative in northern and eastern cities, 
with the highest coefficient decreasing from 0.194 in 2005 to − 0.032 in 2019. Population density contributed to 
ULUE in southern and northwestern cities during 2005–2010 (coefficients ranging from 0.008 to 0.198), while it 
negatively influenced ULUE in most cities since 2015 (coefficients ranging from − 0.009 to − 0.283). The cor-
relation between nighttime light, per capita road, and ULUE showed noticeable south-north differentiation. Our 
study provides valuable guidelines for Tailor-made strategies of efficient urban management towards sustainable 
urbanization.   

1. Introduction 

Rapid urbanization is happening in the world in the last few decades, 
due to the rapid growth of urban population. More than 60% of the 
world’s population will live in urban areas by 2030, with nearly 90% of 
the population increase happening in the cities (Ramaiah & Avtar, 
2019). As the most populous country and the second-largest economy, 
China has witnessed the largest and fastest urbanization in the history 
during the past four decades (Tan et al., 2016). According to the Chinese 
construction statistics yearbooks, the urban land in mainland China 
increased eight folds from nearly 7000 km2 to over 58,000 km2, between 
1978 and 2020. Urban expansion in China will accelerate in the coming 
years, with the projection of urban land probably reaching over 80,000 
km2 by 2030 (Cui et al., 2019). Excessive expansion of urban land has 

led to certain issues including regional incoordination, destruction of 
urban nature, air pollution, and natural ecosystem degradation, which 
lower the urban land use efficiency and constrain urban sustainability 
(Chen et al., 2018; Liu et al., 2020; Peng et al., 2021; Song et al., 2022). 
In recent years, green development is thought to be a key strategy in 
achieving sustainable and efficient urban development. In 2020, China’s 
government put forth the objective of “dual carbon”, which entails 
achieving the peak of carbon dioxide (CO2) emissions by 2030 and 
attaining carbon neutrality by 2060, as part of their overarching goal of 
achieving green development (the Xinhua News Agency, 2020). Green 
development contributes to the coordination between the economy, 
society, and ecology by reducing resource consumption, pollution, and 
emissions of greenhouse gas without reducing living quality and eco-
nomic growth (Sun et al., 2018). In pursuit of effective strategies for 
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efficient management of urban growth and sustainable urbanization, an 
essential prerequisite involves comprehending the spatiotemporal dy-
namics of urban land use efficiency (ULUE) under green development 
orientation and its potential influencing factors. 

ULUE refers to the relative efficiency with which a spectrum of so-
cioeconomic resources including land, capital, and labor, is employed to 
optimize outcomes within a given unit of urban land. Through effective 
resource inputs, urban planners endeavor to enhance economic growth, 
improve social welfare, and cultivate environmental benefits, while 
concurrently minimizing waste and inefficiencies (Liu et al., 2021; Zhu, 
Li, et al., 2019). ULUE is generally influenced by economic, social, and 
environmental factors (Hu et al., 2022). The rapid urban expansion in 
China will probably lower ULUE due to increasing energy consumption 
and environmental pollution, bringing challenges to efficient urban 
growth. ULUE under green development orientation should consider 
expected outputs, such as economic, societal, and ecological benefits, as 
well as adverse consequences including diverse environmental pollu-
tion, under certain resource conditions. Due to the unavailability of 
certain traditional statistical data, some studies of ULUE fail to consider 
some undesirable outputs under the concept of green development, such 
as the emissions of CO2, and the concentrations of fine particulate matter 
(PM2.5). In addition, previous studies often omitted the spatiotemporal 
disparities of varying impacts of socioeconomic factors on ULUE, 
consequently failing to adequately depict the dynamics of these effects 
over space and time, and creating challenges for policymakers in 
formulating tailored strategies. 

Hence, we proposed three research questions in this study (1) how 
did the ULUE under green development orientation in Chinese cities 
evolve over space and time during 2005–2019? (2) What are the impacts 
of different socioeconomic factors on ULUE? (3) How did these impacts 
vary spatially and temporally? To answer these questions, this study 
aims to (1) utilize the super efficiency slack-based model (SBM) to assess 
the green development-oriented ULUE; (2) identify the spatiotemporal 
evolution of ULUE in 284 cities and eight economic zones in China using 
the Exploratory Spatial Data Analysis; (3) reveal the spatiotemporal 
heterogeneity of the associations between ULUE and its determinants 
using the geographically and temporally weighted regression (GTWR) 
model. This study makes efforts to understand the spatiotemporal dy-
namics of ULUE and its determinants under green development orien-
tation in Chinese cities. Such effort not only provide a comprehensive 
review of ULUE evolution over space and time, but also may help local 
governments to make informed decision about the urban development 
policies to achieve sustainable urbanization. 

2. Literature review 

2.1. Analysis of ULUE in China 

ULUE has been widely studied in China with different objectives and 
backgrounds. Previous studies often analyzed spatiotemporal variations 
of ULUE and its influencing factors in China’s individual provinces (Ge 
& Liu, 2021; Yao & Zhang, 2021; Zhang et al., 2020). Besides, some 
studies focused on the ULUE in urban agglomerations in China. 
including the Yellow River Basin (Xue et al., 2022), the Yangtze River 
Delta (Wu et al., 2017), and the Yangtze River Economic Belt (Ge et al., 
2022). By analyzing ULUE in specific areas, researchers provided sug-
gestions for regional planning and improvement of ULUE. Moreover, 
there are some nationwide studies investigating the spatiotemporal 
patterns of ULUE and comparing the differences among eastern, central, 
and western regions. For example, Zhang et al. (2022) utilized the ratio 
of urban build-up land and constant price of GDP as a proxy to evaluate 
ULUE in Chinese cities and found ULUE increased significantly in the 
eastern regions from 2000 to 2015, while many cities in the central 
regions exhibited low ULUE. To date, there is no nationwide study that 
has comprehensively compared the regional disparities in ULUE over 
space and time with a fine-grained regional classification. 

In the other research front, scholars conducted substantial research 
on ULUE under different backgrounds based on the various re-
quirements of urban development. For example, Liu et al. (2022) 
adopted super efficiency SBM and difference-in-difference method to 
evaluate the impact of the low-carbon city pilot policy on ULUE. They 
showed a downward trend of ULUE in these 186 cities and demonstrated 
that the low carbon city pilot policy negatively influenced ULUE. To 
explore development strategies for resource-based cities, Song et al. 
(2022) utilized SBM and the Tobit model to assess the ULUE and its 
determinants in 115 resource-based cities from 2000 to 2018. They 
found that the ULUE in these cities generally increased despite some 
fluctuations and suggested that natural resource endowments and so-
cioeconomic structure could influence different types of resource-based 
cities to various degrees. Under the context of urban agglomeration (UA) 
development, Yu et al. (2019) employed SBM model to examine the 
spatiotemporal pattern of ULUE in 12 UAs and suggested that Yangtze 
River Delta and Pearl River Delta kept efficient urban land use, while 
central China had lowest ULUE over time. Despite such research efforts, 
a comprehensive examination of ULUE in Chinese cities under the 
concept of green development remains unexplored in existing studies. 

2.2. Measurements of ULUE 

Previous research has witnessed numerous debates surrounding the 
measurement of ULUE. According to the sustainable development goal 
(SDG) 11.3.1 proposed by the United Nations (United Nations, 2018), 
some scholars measured ULUE by calculating the ratio of urban land 
consumption to the population growth rate (Estoque et al., 2021; Koroso 
et al., 2020, 2021). Besides, ULUE is more commonly measured using 
input-output functions, which are more reliable and closely related to its 
definition. For example, Jiao et al. (2020) established scale-adjusted 
functions of land input-output performance to evaluate the ULUE. 
They derived the land input performance by considering built-up areas 
and population, while the land output performance was evaluated based 
on the value of gross regional products and population. This approach, 
however, neglected to consider inputs of other social resources and 
outputs of societal and environmental benefits. 

To address the limitation, many researchers use the Data Envelop-
ment Analysis (DEA) to evaluate ULUE by measuring how efficient the 
outputs of a set of cities are with a combination of multiple inputs (Chen 
et al., 2019). Among the DEA methods, the SBM is always conducted to 
assess urban land use efficiency by considering both desirable outputs 
and undesirable outputs. The SBM can measure ULUE regarding situa-
tions of excess inputs and undesirable outputs or insufficient desirable 
outputs (Tan et al., 2021). Moreover, some studies developed the 
super-efficiency SBM to further compare ULUE across different cities (Ge 
et al., 2022; Pang & Wang, 2020; Tang et al., 2021). In the DEA 
approach, land, labor, and capital are three key inputs of the model, 
while economic benefits, society benefits, as well as environmental 
benefits are the three main desirable outputs (Cui et al., 2021; Lu et al., 
2020). Industrial pollution is always considered as undesirable output 
(Ge et al., 2021; Wu et al., 2022). However, the indicators used in pre-
vious studies were usually derived from statistical data, which limited 
the comprehensive evaluation of ULUE. For instance, carbon emissions 
and PM2.5 concentrations, 2 elements considered to constrain green 
development, are usually omitted in existing studies due to limitation of 
statistical data. Few studies used remote sensing data to make up the 
limitation of statistical data and simultaneously consider pollution and 
greenhouse gas as undesirable outputs to measure ULUE. 

2.3. Detecting determinants of ULUE 

In previous studies, diverse socioeconomic factors are considered to 
have great impacts on ULUE. For example, urban capital is proven to 
have negative impacts on ULUE, while total external economic linkage, 
per capita GDP, and industrial structure upgrading positively influence 
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ULUE (Gao et al., 2020). Zhu, Zhang, et al. (2019) proved that infra-
structure, economics, as well as markets, have positive impacts on 
ULUE, while land systems negatively influence ULUE. Also, urbanization 
level, ecological input, and government regulation influence ULUE to 
various degrees (Han et al., 2020; Wang et al., 2023). Moreover, the 
impacts of the degree of openness, construction of roads, as well as 
population density on ULUE remain inconclusive, with previous studies 
reporting mixed effects and varied outcomes (Cao et al., 2019; He et al., 
2020; Lu et al., 2020; Song et al., 2022; Yu et al., 2019). Liu et al. (2021) 
demonstrated that industrial structure upgrading has a spatial spillover 
effect, with surrounding values of industrial structure upgrading 
contributing to improvement of local ULUE. They also found that in-
dustrial structure upgrading could previously inhibit and then promote 
ULUE. 

In terms of the methodology, massive studies detected the influ-
encing factors of ULUE from the perspective of economics using the 
econometric model such as the two-stage least squares method (Zhao 
et al., 2021) and the Tobit model (Song et al., 2022). Considering the 
spatial correlation of the residual term, the spatial econometric models 
including the spatial lag model (SLM) and spatial error model (SEM) are 
used to explore the impacts of determinants on ULUE with less error 
(Han et al., 2020; He et al., 2020). Moreover, the spatial Durbin model 
(SDM) is commonly used to examine the spatial spillover effect of the 
determinants (Zhang et al., 2022). However, these are global regression 
models with the assumption of isotropic association between variables, 
failing to reveal the local situation. Given the spatial non-stationary 
effects of the determinants on ULUE, a few studies conducted the 
Geographically Weighted Model (GWR) to explore the spatial hetero-
geneity of the determinants (Cao et al., 2019; Wu et al., 2017). Apart 
from spatial heterogeneity, temporal heterogeneity is also a crucial 
aspect for understanding the temporal dynamics between ULUE and 
each socioeconomic factor. Considering the spatial and temporal 
non-stationary effects of such associations contributes to revealing 
dominant socioeconomic factors influencing ULUE for different regions 
during different time periods. However, few studies considered both 
spatial and temporal heterogeneity of the determinants of ULUE in 
Chinese cities. 

2.4. Research gaps 

To summarize, existing studies have extensively evaluated spatio-
temporal evolution of ULUE in China at different scale (e.g., nation, 
urban agglomeration, province) under different context such as low- 
carbon city policy, regional integration, coordination of urban 
agglomeration. To examine the determinants of ULUE, various econo-
metric regression models including Tobit regression model, spatial 
econometric models have been conducted. However, there are still some 
limitations in existing studies. (1) Little is known about the spatiotem-
poral patterns and the fine-grained regional disparities of the ULUE in 
Chinese cities under the concept of green development. (2) Few studies 
incorporated remote sensing data and statistical data to assess green 
development oriented ULUE. (3) The spatiotemporal heterogeneity of 
the associations between ULUE and its determinants remains lacking. To 
address these gaps, we employed remote sensing data to assess CO2 and 
PM2.5 concentrations at the municipal level, considering them as un-
desirable outputs of green development oriented ULUE. We also used 
GTWR model to illustrate how the impacts of socioeconomic develop-
ment on ULUE varied in 284 Chinese cities and eight economic zones 
over space and time. 

3. Materials and methodology 

3.1. Study area 

The study area of this thesis is 284 cities in China. Due to the un-
availability of relevant data, Hong Kong, Macao, Taiwan, Tibet, and 

some cities (e.g., Haidong in Qinghai Province, Bijie in Guizhou Prov-
ince, Tianmen in Hubei Province, etc.) are excluded. The built-up areas 
of selected cities account for 96% of the built-up areas in mainland 
China, while the urban population in these cities accounts for 97.2% of 
the urban population in mainland China (Fig. 1). Due to the differences 
in socioeconomic status and resource endowment in China, the sample 
cities could be divided into eight economic zones proposed by the 
Development Research Center of the State Council. Specifically, the 
Northeast economic zone (NEEZ) includes cities in Jilin, Heilongjiang, 
and Liaoning; the Northern coastal economic zone (NCEZ) includes 
cities in Beijing, Tianjin, Hebei, and Shandong; the Eastern coastal 
economic zone (ECEZ) includes cities in Shanghai, Jiangsu, and Zhe-
jiang; the Southern coastal economic zone (SCEZ) includes cities in 
Fujian, Hainan, and Guangdong; the Yellow river midstream economic 
zone (YEMEZ) includes cities in Shaanxi, Shanxi, Henan, Inner 
Mongolia; the Yangtze River midstream economic zone (YAMEZ) in-
cludes cities in Hubei, Hunan, Jiangxi, and Anhui; the Southwestern 
economic zone (SWEZ) includes cities in Guizhou, Sichuan, Chongqing, 
and Guangxi; the Northwestern economic zone (NWEZ) includes cities 
in Gansu, Qinghai, Ningxia (Table 1). 

3.2. Data collection and pre-processing 

Table 2 summarizes the relevant data information. The Center for 
Global Environmental Research provides the Open-Data Inventory for 
Anthropogenic Carbon dioxide (ODIAC), presenting the global CO2 
emissions (Oda & Maksyutov, 2022). This dataset contains spatial data 
of CO2 emissions from fossil fuels with a high resolution of 1 × 1km from 
2000 to 2019, which can help derive values of CO2 emissions in Chinese 
cities in the recent 20 years. In terms of PM2.5 concentration data, the 
Atmospheric Composition Analysis Group from Washington University 
in St. Louis estimated PM2.5 concentration by combining various sat-
ellite data. They provide global annual mean PM2.5 raster data with a 
resolution of 0.01◦ × 0.01◦ from 1998 to 2020, from which the PM2.5 
concentration of Chinese cities can be derived (van Donkelaar et al., 
2021). Additionally, the nighttime light data is obtained from the 
NPP-VIIRS satellite data of the Harvard dataset (Z. Chen, Yu, et al., 
2020b). To ensure the consistency of spatial resolution of remote sensing 
data, we firstly clipped the global data using the boundary of China, and 
then aggregated the values of each raster grid within each city based on 
the municipal administrative boundaries. Lastly, we repeated the same 
processes for each raster image of different years in each dataset to 
obtain the annual values of each indicator at the municipal level. Other 
statistical data are from Chinese city statistic yearbooks (2005–2019), 
Chinese construction yearbooks (2005–2019), various provincial sta-
tistic yearbooks (2005–2019), and the statistical bulletins of national 
economic and social development of cities. A few missing values in 
several years were supplemented by using linear interpolation according 
to the trend (Wei et al., 2004; Zhao & Wei, 2019). Besides, all the var-
iables with monetary value were adjusted to the 2005 constant prices 
using price deflators to ensure comparability. 

3.3. Methods 

3.3.1. The super efficiency SBM 
As mentioned in section 2.2, the DEA method is a mainstream 

approach to measuring ULUE as it can evaluate the relative efficiency of 
a set of decision-making units (DMUs) - in this study, cities - without 
setting prior functions and parameters weights (Wei et al., 2004; Zhao & 
Wei, 2019). The principle of the DEA is to develop an efficient frontier 
based on multiple combinations of inputs and outputs and measure the 
gaps between each DMU and the frontier (Shen & Zhang, 2012). How-
ever, the traditional radial DEA model neglect slack variables, and the 
undesirable outputs are not considered in this approach. To solve this 
problem, Tone (2001) proposed the SBM by taking into account slack 
variables in the objective function, which avoids ignoring the effects of 
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undesirable outputs. Generally, the SBM model is not able to differen-
tiate among the efficient DMUs as the values for all the efficient DMUs 
would be 1. However, this shortage can be overcome by the 
super-efficiency SBM (Tian et al., 2020). Hence, this study adopted the 
super-efficiency SBM model to estimate ULUE, which allows to compare 
ULUE values of the efficient cities. The function is shown below: 

min ∅ =

1
m

∑m

i=1

x
xik

1
r1+r2

(
∑r1
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+
∑r2

q=1
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qk

)

Fig. 1. Overview of the Study area in China.  

Table 1 
Summary of 8 Economic zones in China.  

Abbreviation Economic Zone Cities 

ECCEZ The Eastern Coastal 
Comprehensive Economic Zone 

Cities in Shanghai, Jiangsu, and 
Zhejiang 

NCCEZ The Northern Coastal 
Comprehensive Economic Zone 

Cities in Beijing, Tianjin, Hebei, 
and Shandong 

NECEZ The Northeast Comprehensive 
Economic Zone 

Cities in Jilin, Heilongjiang, 
and Liaoning 

NWCEZ The Northwestern 
Comprehensive Economic Zone 

Cities in Gansu, Qinghai, and 
Ningxia, Tibet, Xinjiang 

SCCEZ The Southern Coastal 
Comprehensive Economic Zone 

Cities in Fujian, Hainan, and 
Guangdong 

SWCEZ The Southwestern 
Comprehensive Economic Zone 

Cities in Yunnan, Guizhou, 
Sichuan, Chongqing, and 
Guangxi 

YAMCEZ The Yangtze River Midstream 
Comprehensive Economic Zone 

Cities in Hubei, Hunan, Jiangxi, 
and Anhui 

YEMCEZ The Yellow River Midstream 
Comprehensive Economic Zone 

Cities in Shaanxi, Shanxi, 
Henan, and Inner Mongolia  

Table 2 
Summary of data.  

Data type Data description Source (acquisition time) Spatial 
Resolution 

Remote 
sensing 
data 

Raster data of annual 
mean CO2 emission 

https://db.cger.nies.go. 
jp/dataset/ODIAC/(July 
15, 2022) 

1 km × 1 
km 

Raster data of annual 
mean PM2.5 
concentration 

https://sites.wustl. 
edu/acag/datasets/surface 
-pm2-5/#versioninfo (July 
15, 2022) 

0.01◦ ×

0.01◦

Raster data of global 
NPP-VIIRS-like 
nighttime light data 

https://dataverse.harvard. 
edu/dataset.xhtml?persi 
stentId=doi:10.7910/D 
VN/YGIVCD (July 15, 
2022) 

15 arcsec 
(~500 m) 

Statistical 
data 

Socioeconomic data Chinese city statistic 
yearbooks (July 01, 2022) 

Municipal 
level  

Provincial statistic 
yearbooks (July 01, 2022)   
The statistical bulletins of 
national economic and 
social development (July 
01, 2022)  

Urban land-use data Chinese construction 
yearbooks (July 01, 2022)   
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∑n
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yd
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yd ≥
∑n

j=1,∕=k

yu
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x ≥ xk k = 1, 2,…,m

yd ≤ yk
d q = 1, 2,…, r1

yu ≥ yu
k u = 1, 2,…, r2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where, m, r1, r2, denote input, desirable outputs, and undesirable out-
puts respectively; x, yd, yu denote elements in the corresponding input 
matrix, desirable output matrix, and undesirable output matrix; ∅  is the 
value of land use efficiency, when ∅ ≥ 1, DMU (city in this study) is 
efficient, while it is inefficient when ∅ < 1. 

As for the variables, we selected built-up area, employees of sec-
ondary and tertiary sectors, and values of fixed assets investment as 
land, labor, and capital inputs, respectively (Hu et al., 2022). For the 
desirable outputs, we selected value-added from secondary and tertiary 
industries as economic output since it reflects urban economic growth 
(Dong et al., 2020; Tang et al., 2021). Besides, we selected local gov-
ernment revenue as societal output since it includes urban public utility 
revenue for social welfare-related development, such as education, 
public health, science, and culture (Song et al., 2022). In addition, we 
selected per capita green park area as environmental output because it is 
a positive indicator of sustainable urbanization (Xie et al., 2021). As for 
undesirable outputs, sulfur dioxide emissions, industrial wastewater 
discharge, and industrial soot discharge are included as industrial 
pollution (Tang et al., 2021). Additionally, according to the requirement 
of green development, we selected CO2 emissions, and PM2.5 concen-
trations as another two undesirable outputs (Lin & Jiang, 2022). The 
descriptive statistics of input-output variables are shown in Table 3. 

3.3.2. Spatiotemporal analysis of ULUE evolution 
To investigate the spatiotemporal evolution of ULUE, we first con-

ducted the KDE analysis, which can describe the probability distribution 
of random variables using continuous curves, to reveal the distribution 
locations, shape, and ductility of ULUE (Wang et al., 2021). To evaluate 
whether ULUE in Chinese cities is spatially clustered, dispersed, or 
randomly distributed, Global Moran’s I index will be conducted to 
examine the spatial autocorrelation of ULUE in each year from 2005 to 
2019. Besides, Local indicators of spatial association (LISA) will be 
further used to demonstrate whether there are high-high clusters, 
high-low clusters, low-low clusters, or low-high clusters of ULUE in 
Chinese cities in particular years (Anselin, 1995). The Global Moran’s I 
index can be expressed as: 

I =
n
∑n

i=1
∑n

j=1Wij(xi − x)
(
xj − x

)

(∑n
i=1
∑n

j=1Wij

)∑n
i=1(xi − x)2 

LISA can be calculated as: 

Ii =

∑n
j=1Wij(xi − x)

(
xj − x

)

1
n

∑n
i=1(xi − x)2  

Where xi and xj are the values of ULUE of cities i and j. x is the average 
value of ULUE of all cities. Wij is the spatial weight matrix corresponding 
to the cities pair i and j; and n is total number of cities. The positive 
Global Moran’s I value means cluster pattern, while negative value 
means disperse pattern. Besides, the positive value of local indicators 
means the correlation becomes increasingly significant with the aggre-
gation of locations, and vice versa. 

3.3.3. Geographically and temporally weighted regression model 
The GTWR model is an extension of the GWR model by introducing 

temporal effects based on the GWR model (Huang et al., 2010). Tradi-
tional econometric regression models such as the ordinary least square 
model (OLS) can only present the global impacts of explanatory vari-
ables on the independent variable, which is an average effect. However, 
most geographic phenomena such as ULUE are sensitive to space and 
time, which contain both spatial and temporal correlations. The GTWR 
model can take into account spatial and temporal non-stationary effects, 
producing more accurate results for the assessment. Hence, this study 
employs the GTWR model to investigate the impacts of socio-economic 
activities on the ULUE of Chinese cities over space and time. The GTWR 
function is defined as: 

yi = β0(ui, vi, ti)
∑p

k=1
βk(ui, vi, ti)Xik + εi  

Where (ui, vi, ti) denotes the spatiotemporal coordinates of the ith city; 
β0(ui, vi, ti) denotes the intercept; βk(ui, vi, ti) denotes the estimated co-
efficient of the determinant of ULUE Xik and εi is the residual error term. 
The estimated coefficient of the kth determinant of ith city can be defined 
as: 

β̂(ui, vi, ti)=
[
XT WiX

]− 1XT WiY  

Where X and Y denotes a n × (p+1) matrix of the determinants and the 
vector of dependent variables, respectively; Wi is an n × n diagonal 
matrix of spatiotemporal weight, which can be calculated using a 
Gaussian kernel function: 

wij = exp

⎛

⎜
⎝

λ
(

dS
ij

)2
+ μ
(

dT
ij

)2

h2
ST

⎞

⎟
⎠

Where λ and μ respectively denote scale factors in the spatial metric 

Table 3 
Descriptive statistic of input-output variables of the ULUE.  

variable Description Mean Std. dev. Max Min Unit 

Land input Built-up area 156.38 187.73 1515.41 6 km2 

Capital input Values of fixed assets investment 10,715,157 12,935,036 147,000,000 273,351 100,00 yuan 
Labor input Employees of the secondary and tertiary sectors 511,626 768,246.4 9,518,500 42,000 persons 
Economic output Value-added from secondary and tertiary industries 15,166,397 23,678,128 283,000,000 320,157 10,000 yuan 
Societal output Local government revenue 1,450,226 3,455,746 58,292,510 14,024 10,000 yuan 
Environmental output Per capita Park green area 12.03 5.03 75.05 0.89 m2/person 
Undesirable output Sulfur dioxide emission 49,981.85 56,044.23 683,162 2 ton 

Industrial wastewater discharge 7611.89 20,403.74 704,746 7 10,000 tons 
Industrial soot discharge 30,438.92 116,698.8 5,168,812 34 10,000 tons 
CO2 emissions 785.50 848.23 7953.48 21.03 10,000 tons 
PM2.5 concentrations 45.75 15.85 108.87 13.34 μg/m3  
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system and the temporal metric system; dS
ij and dT

ij denote spatial dis-
tance and temporal distance between object i and j; h2

ST denotes 
spatiotemporal bandwidth satisfying the following relationships with 
spatial bandwidth hS and temporal bandwidth hT: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
hS)2

= h2
ST
/

λ
(
hT)2

= h2
ST
/

μ  

In this study, ULUE is the dependent variable, and the independent 
variables include diverse socio-economic activities. Specifically, per 
capita GDP (PGDP) reflects economic development and is supposed to 
have a positive impact on ULUE (Yu et al., 2019). Industrial structure 
(IDS) is measured by the proportion of value-added from secondary 
industry to GDP, which is supposed to be negatively related to ULUE 
because of heavy energy consumption and environmental pollution (Cao 
et al., 2019). Due to the availability of data, the value of import and 
export was used as a proxy to measure the degree of openness (OPEN). 
The degree of openness is supposed to have various impacts on ULUE 
according to different modes of foreign investment (Lu et al., 2020). 
Investment in real estate (REI) reflects dependency on natural endow-
ments and exploitation of land resources, which should influence ULUE 
to various degrees (Song et al., 2022). Urban population density (PD) 
and nighttime light (NTL) can reflect degrees of urbanization and urban 
sprawl, which is anticipated to positively influence ULUE based on the 
global regression analysis (Zhang et al., 2022). Per capita road areas 
(ROAD) are also selected to represent the construction of infrastructure 
in a city, which can promote urbanization but probably disrupt urban 
landscapes. Therefore, it is supposed to have both positive and negative 
impacts on ULUE (He et al., 2020). Investment in technology and science 
(TECH) is supposed to positively influence ULUE due to it is beneficial to 
the transformation of production mode that can reduce undesirable 
outputs (Song et al., 2022). The descriptive statistic of dependent and 
independent variables is shown in Table A1. To avoid the effects of 
multicollinearity, the variance inflation factors (VIF) test is used to 
detect the multicollinearity of 8 explanatory variables. The result shows 
that VIF is less than 5 for all variables, indicating that there is no mul-
ticollinearity in the explanatory variables. The performance of the 
GTWR model was evaluated by adjusted R2 and the Akaike information 
criterion (AICc). The higher R2 and lower AICc represent better per-
formance. The overall workflow of this study is presented in Fig. 2. 

4. Results 

According to the results of the super efficiency SBM, the annual 

average ULUE score of China saw a noticeable growth from 0.404 to 
0.550 during 2005–2019, despite fluctuation. The number of efficient 
cities in China significantly increased from 30 in 2005 and achieve a 
peak of 61 in 2018 before decreasing to 52 in 2019. 

4.1. Spatiotemporal evaluation of ULUE at regional scale 

The temporal evolution of ULUE in eight economic zones is shown in 
Fig. 3. ULUE of all economic zones presents the tendency to generally 
increase with slight fluctuations from 2005 to 2019. Generally, SCEZ 

Fig. 2. The overall workflow of this study.  

Fig. 3. Spatiotemporal patterns of ULUE in eight economic zones dur-
ing 2005–2019. 
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kept relatively high ULUE during 2005–2019, with ULUE values higher 
than 0.550 each year, which is significantly higher than the average 
level in the whole of China. By contrast, the YAMEZ and the YEMEZ 
showed relatively low ULUE, being lower than the average level in the 
whole of China each year. Moreover, ULUE of NCEZ, NEEZ, and NWEZ 
saw a significant increase during 2005–2019, with added values of 
0.262, 0.211, and 0.358, respectively, indicating that these regions 
made great progress in green development and sustainable urbanization 
during 2005–2019. In terms of the number of efficient cities, SCEZ 
included the largest number of efficient cities in most years, while NWEZ 
witnessed great progress in increasing efficient cities, with an increasing 
number from 1 in 2005 to 8 in 2019. However, an unexpected result 
shows that although the average ULUE of ECEZ is relatively high, the 
proportion of efficient cities in various years is relatively small. This 
result illustrates that despite the high value of ULUE, the urban land use 
of most cities in ECEZ did not achieve an efficient level under green 
development orientation. 

4.2. Spatiotemporal evaluation of ULUE at city scale 

Fig. 4 demonstrates the spatiotemporal distribution of ULUE in 
Chinese cities, showing the intraregional differences within eight eco-
nomic zones. We divided the cities into 5 groups based on the values of 
ULUE. Specifically, cities with ULUE value ≥ 1 were categorized as 
efficient cities according to the principle of the super efficiency SBM, 
which means the inputs and outputs in these cities attained a relatively 
balance state. For cities exhibiting inefficiency (e.g., ULUE < 1), we 
followed one previous study and equally divided the ULUE values into 
four ranges, thereby establishing four distinct categories: highly ineffi-
cient cities (ULUE ≤ 0.25), moderately inefficient cities 
(0.25 < ULUE ≤ 0.5), slightly inefficient cities (0.5 < ULUE ≤ 0.75), 
and nearly efficient cities (0.75 < ULUE < 1) (Cao et al., 2019). In 2005, 
slightly efficient cities and efficient cities were concentrated in the 
southern coastal economic zone and the eastern coastal economic zone 
of southeastern China, especially in 2 developed regions, that is, Pearl 

Fig. 4. Spatiotemporal patterns of ULUE in Chinese cities during 2005–2019.  
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Reiver Data (PRD) and Yangtze River Delta (YRD). Urban land use of 9 
cities in the 2 regions including Shenzhen, Foshan, Dongguan, Zhong-
shan, Shanghai, Wuxi, Suzhou, Ningbo, and Shaoxing achieved an 
optimal level of ULUE. Besides, many Northern cities and western cities 
performed at a highly inefficient level of ULUE despite there being 
certain efficient cities, such as Zigong, Daqing, Lijiang, ordos, etc. In 
2010, the number of highly inefficient increased in the Yangtze River 
midstream economic zone of central China, whereas it noticeably 
declined in the southwestern economic zone, the northern coastal eco-
nomic zone, and the northeast economic zone. Moreover, the number of 
efficient cities within southeastern China slightly declined. From 2010 
to 2015, most cities presented an increasing trend of ULUE, suggesting 
that green development of urban land use made great effects. Many 
northwestern cities in the Yellow River midstream economic zone and 
the northwestern economic zone and northeastern cities in the northeast 
economic zone achieved an efficient level of urban land use, such as 
Baotou, Eros, Zhangye, Qingyang, Jiayuguan, Hegang. In 2019, the 
number of efficient cities continuously increased, and many cities 
transferred from moderately inefficient cities to slightly inefficient cit-
ies, with only a few highly inefficient cities remaining in inland China, 
such as Yuncheng, Weinan, Qiqihar, Xiaogang, and Huanggang. Overall, 
although highly inefficient cities and moderately inefficient cities 
gradually decreased during 2005–2019, a large proportion of cities still 
witnessed a moderately inefficient level and 80% of cities did not ach-
ieve an efficient level, revealing great challenges for efficient urban 
management. 

In terms of the KDE result, the curve shows the characteristics of 
double peaks since 2005, indicating that there is a polarization effect of 
ULUE in 284 Chinese cities (Fig. 4e). The kernel density of the first peak 
is much higher than that of the second peak, which implies that the 
proportion of cities with low ULUE is higher than that of cities with high 
ULUE. Besides, the curve shape of the main peak become smoother, and 
the peak value become smaller from 2005 to 2019, suggesting that the 

degree of polarization effect declined noticeably, and the regional dif-
ferences enlarged. As for the curve position, the center of the curve 
moves to the right and the value of the second peak continuously in-
creases during 2005–2019. This pattern indicates that cities gradually 
moved from the low-ULUE group to the high-ULUE group and the pro-
portion of cities with high ULUE became larger whilst the proportion of 
low-ULUE cities became smaller during 2005–2019. 

Besides, the positive Moran’s I value demonstrates that ULUE was 
spatially clustered during 2005–2019, which means the ULUE perfor-
mance of a city is supposed to be influenced by its neighboring cities 
(Table A2). The local autocorrelation results show that in 2005, high- 
high agglomerations were mainly located in the southern coastal eco-
nomic zone and the eastern coastal economic zone of southeastern 
China, indicating high-ULUE cities often cluster together. In addition, 
low-high outliers mainly occurred in cities surrounding these regions, 
indicating that low-ULUE cities were surrounded by high-ULUE cities. 
On contrary, the largest low-low agglomerations were approximately 
located in central China across the northern coastal economic zone, the 
Yangtze River midstream economic zone, and the Yellow River 
midstream economic zone, in which certain cities such as Dongying, 
Puyang, Xucang, Luohe, and Jincheng showed patterns of high-low 
outliers. Moreover, there were certain low-low agglomerations located 
in the north of the northeast economic zone, the southeast of the 
southwestern economic zone, and the east of the northwestern economic 
zone (Fig. 5a). From 2005 to 2010, low-low clusters in the northeast 
economic zone and the northwestern economic zone were eliminated, 
while the central low-low agglomeration expanded to the west and 
south. In addition, the high-high cluster of the eastern coastal economic 
zone was also eliminated, while the high-high clusters in the southern 
coastal economic zone recessed, with several cities in PRD and eastern 
Guangdong including Guangzhou, Foshan, Zhongshan, Zhuhai, Zhaoq-
ing, Jieyang, Chaozhou, Shantou, and Shanwei remaining. Besides, 2 
emerging low-high clusters occurred in Jiuquan and Yulin, which means 

Fig. 5. LISA map of ULUE in Chinese cities during 2005–2019.  
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these 2 cities were surrounded by cities with relatively high ULUE values 
(Fig. 5b). 

In the next 5 years, the high-high clusters in PRD and the low-low 
clusters in the southwestern economic zone continuously recessed, 
while there were 2 emerging high-high clusters located in the Bayan 
Nur, Baotou, Yantai, and Weihai. Additionally, the low-low clusters in 
central China expanded from the south to the north. Moreover, certain 
emerging high-low clusters occurred in cities near or inside the central 
low-low agglomeration, for example, Yanan Jilin, Suizhou, and Luohe, 
which is probably because ULUE of these cities noticeably increased 
during this period. In addition, an emerging low-high agglomeration in 
Suihua and Weifang, indicating that they were surrounded by cities with 
relatively high ULUE (Fig. 5c). In 2019, the most noticeable pattern was 
that the low-low clusters in central China were eliminated, replaced by 2 
emerging low-low clusters in the Yellow River midstream economic 
zone and the Yangtze River midstream economic zone. Surprisingly, the 
high-high cluster in Bayan Nur transferred into low-high outliers, which 
is probably because the ULUE value in Bayan Nur increased slower than 
in surrounding cities. Besides, a high-high cluster occurred in Zhangye, 
while several low-high agglomerations occurred in Baiyin, Wuzhong, 
Yinchuan, and Tianshui. Moreover, a few high-low agglomerations are 
scattered in various regions (Fig. 5d). 

4.3. Spatiotemporal impact of the determinants on ULUE 

4.3.1. General results of the GTWR 
The OLS model, the TWR model, the GWR model, and the GTWR 

were conducted to estimate the impacts of the determinants on ULUE of 
Chinese cities, respectively. Compared with other 3 models, the GTWR 
model presents the highest adjusted R2 and the smallest AICc, indicating 
that the GTWR performed the best among the models (Table A3). The 
adjusted R2 of the GTWR model is 0.442, which means the selected 
variables can explain 44.2% of the identified variance in ULUE. The 
coefficient summary reveals that the impacts of per capita GDP, in-
vestment in technology and science, and the degree of openness on 
ULUE are predominantly positive, albeit with slight heterogeneity, 
which is evident from the positive lower quartile coefficients of these 
variables. Conversely, the generally adverse effects of investment in real 
estate, the industrial structure, and population density on ULUE are 
shown despite of slight heterogeneity because of the negative upper 
quartile coefficients. However, the associations between per capita 
urban road and nighttime light value and ULUE exhibit relatively 
notable spatiotemporal heterogeneity, as evidenced by the divergent 
directions of the lower quartile and upper quartile coefficients (Table 4). 

4.3.2. Temporal heterogeneity of determinants at regional scale 
Figs. 6 and 7 illustrates the temporal variations in mean coefficients 

of determinants in eight economic zones in China. We found that per 

capita GDP generally positively influenced ULUE in eight economic 
zones over time. However, such positive correlation declined by various 
degrees in each economic zone from 2005 to 2019 in addition to the 
eastern coastal economic zone and the Yangtze River midstream eco-
nomic zone. The decreasing trend reveals that the impacts of per capita 
GDP on ULUE were weakened over time, which is probably because 
economic growth was no longer the decisive criterion of efficient urban 
growth in cities within these regions under the concept of green devel-
opment. The coefficients of industrial structure present a decreasing 
trend from positive to negative in the eastern coastal economic zone, the 
northern coastal economic zone, the southwestern economic zone, the 
Yangtze River midstream economic zone, and the Yellow River 
midstream economic zone. Such a trend reveals that secondary industry 
in these zones could improve ULUE in the early years but had negative 
impacts on ULUE in recent years, which is mainly because of the 
transformation of industrial structure. Besides, the south coastal eco-
nomic zone and the southwestern economic zone presented an 
increasingly negative correlation between industrial structure and 
ULUE, indicating that secondary industry increasingly constrained 
ULUE in these economic zones during 2005–2019. However, the coef-
ficient of industrial structure in the northeast economic zone declined 
and then increased during 2005–2019, which is further interpreted in 
the discussion section. Coefficients of the openness degree show a 
noticeable temporal heterogeneity in eight economic zones. Despite the 
fluctuation over time, the openness degree is positively related to ULUE 
in most regions except the south coastal economic zone and the south-
western economic zone, which means openness to the outside world 
contributed to improving ULUE. Nevertheless, the coefficient in the 
south coastal economic zone kept negative with fluctuation to increase 
from 2005 to 2015 and then decreased later, which is probably related to 
the relatively high openness degree in this region. Additionally, asso-
ciations between the investment in real estate and ULUE kept a long- 
term negative pattern in each economic zone, with a generally 
strengthening trend in the eastern coastal economic zone and the 
northern coastal economic zone, and a weakened trend in the northeast 
economic zone, the south coastal economic zone, the southwestern 
economic zone, and the Yellow River midstream economic zone. 

In terms of population density, it shows a strengthening negative 
association with ULUE over time in most economic zones except for the 
south coastal economic zone, indicating that population density 
continuously constrained ULUE in many regions. Population density in 
the south coastal economic zone positively influenced ULUE from 2006 
to 2010, after then the influence transferred to negative. Besides, in the 
eastern coastal economic zone, the south coastal economic zone, the 
southwestern economic zone, and the Yangtze River midstream eco-
nomic zone, the impacts of nighttime light on ULUE were decreasingly 
positive during 2005–2019. Despite the negative correlation between 
nighttime light and ULUE in the northern coastal economic zone, the 
northwestern economic zone, and the Yellow River midstream economic 
zone, such correlation became weakened in recent years. Moreover, the 
negative association between nighttime light and ULUE gradually 
weakened during 2005–2014, and then transferred to increasingly 
positive during 2015–2019. Additionally, the coefficient of per capita 
urban roads in the south coastal economic zone, the Yangtze River 
midstream economic zone, and the Yellow River midstream economic 
zone showed increasingly negative patterns during 2005–2019, indi-
cating that per capita urban roads negatively influenced ULUE in these 
regions to some degree. Furthermore, although per capita urban roads 
improved ULUE in the northeast economic zone, the northwestern 
economic zone, and the southwestern economic zone, this effect, how-
ever, weakened over time. Similar patterns were shown in the eastern 
coastal economic zone and the northern coastal economic zone, in which 
the association between per capita urban roads and ULUE transferred 
from positive to negative. Similar to per capita GDP, investment in 
technology and science is demonstrated to improve ULUE over time. The 
northwestern economic zone saw noticeably high coefficients from 2006 

Table 4 
Summary of parameters and coefficients of GTWR.   

Minimum Lower 
Quartile 

Median Upper 
Quartile 

Maximum 

Intercept − 0.124 0.156 0.216 0.293 0.580 
PGDP − 0.493 0.630 0.925 1.176 3.868 
TECH − 1.187 0.128 0.217 0.317 4.873 
REI − 5.799 − 0.055 − 0.405 − 0.230 0.517 
OPEN − 3.126 0.074 0.327 0.562 11.620 
IDS − 0.733 − 0.186 − 0.093 − 0.015 0.194 
PD − 0.401 − 0.147 − 0.100 − 0.061 0.199 
ROAD − 0.266 − 0.094 − 0.021 0.109 1.462 
NTL − 3.703 − 0.393 0.162 0.552 5.414 
Diagnostic information 
Adj R2 = 0.442 
RSS = 68.65 
AICc = − 5259.49 
Bandwidth = 0.115  
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to 2019. Unexpectedly, the positive influence of investment in tech-
nology and science performed a trend to weaken in most regions, which 
is likely because there were increasing other factors that can improve 
ULUE over time. 

4.3.3. Spatiotemporal heterogeneity of determinants at city scale 
As shown in Fig. 8 a-d, the coefficient of per capita GDP presents a 

decreasing trend from west to east in 2005, indicating that PGDP had a 
stronger positive association with ULUE in western cities than in eastern 
cities. This is probably because, in the early stage of the West China 
Development, economic growth effectively promoted urban growth in 
western cities. Such decreasing trend transited from west-east to north- 
south since 2010. Furthermore, in 2019, the positive coefficient of per 
capita GDP increased from south to north, and the northern coastal and 
the eastern coastal cities presented a higher coefficient than other cities, 
while certain cities in Heilongjiang province show negative coefficients. 
In terms of the coefficient of industrial structure, a decreasing trend was 
shown from coastal cities to inland cities between 2005 and 2015, with 
negative values shown in southwestern cities and northeastern cities 
(Fig. 8 e-h). Since 2015, a negative association between industrial 
structure and ULUE emerged in eastern coastal cities, whilst the negative 
association of northeastern cities gradually transited to positive due to 
industrial upgrading. For the coefficient of the openness degree, it 
showed a pattern that decreased from northern and western cities to 
northeast and south during 2005–2019 (Fig. 9 a-d). Although most cities 

presented a positive association between the openness degree and ULUE, 
a few cities (e.g., Baise, Chongzuo, Zhanjiang, Maoming, Heihe, Suihua, 
etc.) always presented a negative or insignificant correlation. In addi-
tion, the coefficient values of Investment in real estate decreased from 
east to west in 2005, and after then, most cities showed a negative as-
sociation (Fig. 9 e-f). Specifically, noticeably negative associations were 
mainly concentrated in southeastern cities and western cities, while the 
negative associations were relatively weak in southern and northeastern 
cities. 

Positive coefficients of population density were mainly presented in 
cities of the Yellow River midstream economic zone and southern cities, 
while negative coefficients of population density were shown in the rest 
of the cities in 2005 and 2010 (Figure A1 a-d). Specifically, the negative 
correlation was stronger in cities within the southwestern economic 
zone, the Yangtze River midstream economic zone, as well as the eastern 
coastal economic zone than cities in other regions. In 2015 and 2020, 
however, most cities presented a negative coefficient, while a few cities 
including Ordos, Bayan Nur, Jixi, and Jiamusi showed a positive coef-
ficient. Moreover, the negative association between population density 
and ULUE was more significant in southwestern cities and eastern cities 
than in southern cities and northwestern cities. The coefficient of 
nighttime light presents noticeable variation from south to north, with 
positive values concentrated in southern cities and negative values 
concentrated in northern cities (Figure A1 e-h). Nevertheless, certain 
northwestern and northeastern cities such as Jiuquan, Yichun, Jixi, 

Fig. 6. Temporal heterogeneity of correlation between PGDP, IDS, OPEN, REI and ULUE.  
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Shuangyashan, etc. presented a positive correlation since 2015. Inter-
estingly, several northeastern cities with a negative relation between 
nighttime light and ULUE during 2005–2010 showed a positive corre-
lation since 2015. For per capita urban roads, the coefficients generally 
increased from south to north (Figure A2, a-d). The significantly positive 
values were mainly concentrated in western cities and northeastern 
cities during 2005–2019, indicating that urban roads can improve ULUE 
in such areas. By contrast, the opposite impact of per capita urban roads 
on ULUE was shown in most southern and northern cities. Additionally, 
investment in technology and science positively influenced ULUE in 
most cities, except for several cities in Inner Mongolia, Gansu province, 
Hebei province, Shanxi province, and Shaanxi province in 2005 
(Figure A2, e-h). Since then, the positive correlation presented a 
decreasing trend from coastal cities to inland cities, indicating that in-
vestment in technology and science in coastal cities could improve ULUE 
more effectively than that in inland cities. 

5. Discussion 

5.1. Spatiotemporal evolution of ULUE 

This study reveals the spatiotemporal patterns of ULUE under green 
development orientation by using the super-efficiency SBM. Compared 
to the previous studies, this study introduces two important indicators of 
green development, that is, PM2.5 concentrations and CO2 emission, to 
accurately measure ULUE (Han et al., 2020; Tang et al., 2021). From 

2005 to 2019, ULUE in China generally increased with fluctuations. 
Judging from the national level, from 2005 to 2011, ULUE increased 
slowly, maintaining a value of ULUE around 0.41. With the national 
effort to promote sustainable urbanization (or called new-type urbani-
zation in China) since 2012, ULUE experienced a noticeable increase 
from 0.418 to 0.550 during 2012–2019. This indicates that sustainable 
urbanization may effectively contribute to efficient urban management, 
and China is making noticeable efforts to develop sustainable urbani-
zation (Wang et al., 2020). 

Regarding the regional level, coastal regions showed higher ULUE 
than inland regions during 2005–2013, which is mainly due to the high- 
speed economic growth in the coastal regions. In recent years, the 
policy-oriented regional coordination weakened such spatial disparity, 
with ULUE in inland regions significantly improved. Noticeably, ULUE 
in the northwest economic zones, exhibited a significant increase, rising 
from 0.47 in 2013 to 0.70 in 2019. Meanwhile, the number of efficient 
cities within the Yellow River midstream economic zone increased from 
3 to 7 during 2013–2019. These changes narrowed the gap of ULUE 
between coastal regions and inland regions, consistent with a previous 
study (Han et al., 2020). Additionally, ULUE in the northwestern eco-
nomic zone made significant progress during 2005–2019, which is likely 
because of the West China Development. Relatively cheap land costs and 
sufficient natural resources attracted investment in western regions, 
contributing to beneficial outputs of urban land use (Grewal & Ahmed, 
2011; He et al., 2020). Moreover, the revitalization of northeast China 
brought about more sustainable urbanization in the northeastern 

Fig. 7. Temporal heterogeneity of correlation between PD, NTL, ROAD, TECH and ULUE.  
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economic zone. 
In terms of the city level, despite the significant spatiotemporal 

variations of ULUE, ULUE in a few cities maintains an efficient level 
during 2005–2019, such as Beijing, Shanghai, Shenzhen, Ordos, Ping-
xiang, Foshan, Sanya, Zigong, Bazhong, Ziyang, and Lijiang. Generally, 
despite the progress, China is still experiencing a polarization effect at 
the city level, with most cities, especially cities in central China still 
maintaining moderately inefficient levels. Such finding suggests that 

there is a long way to achieve overall green development in Chinese 
cities. 

5.2. Spatiotemporal heterogeneity of the determinants’ effects 

Our study revealed significant spatiotemporal heterogeneity in the 
impacts of potential determinants, incorporating various underlying 
mechanisms. Specifically, per capita GDP positively influences ULUE 

Fig. 8. Spatial heterogeneity of correlation between PGDP, IDS, and ULUE.  
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mainly because the development of the endogenous economy is bene-
ficial to increasing land use benefit. On the contrary, following urban 
land use increases development transiting to land stock development, 
efficient utilization of urban land can stimulate economic growth (Yu 
et al., 2019). Such relationships have been more sensitive in coastal 
cities in eastern and northern China in recent years, consistent with 
previous studies (Cao et al., 2019). As for industrial structure, in the 
early stage, the secondary industry could promote urban expansion and 
then stimulate economic growth in central and eastern cities (Li et al., 

2019). However, because of the extensive development of the heavy 
industry, secondary industry negatively influenced ULUE in north-
eastern cities (Chen et al., 2018). Since then, the strategy for revitali-
zation of old industrial bases in northeast China upgraded the industrial 
structures, improving ULUE in northeastern cities (Guo et al., 2020). 
However, following the increasing proportion of the tertiary industry, 
the positive effects of secondary industry gradually decreased and even 
transferred to negative in most cities, especially in eastern China. 

The positive impact of the openness degree on ULUE in most regions 

Fig. 9. Spatial heterogeneity of correlation between OPEN, REI, and ULUE.  
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is probably because the market openness to the international world 
promotes the transformation of industrial structure, and then improves 
the benefits of urban lands (Yu et al., 2019). Moreover, such positive 
influence strengthens with the increasing openness degree in several 
regions over time. Unexpectedly, such a positive association was 
stronger in western China rather than eastern China, which is incon-
sistent with a previous study (Cao et al., 2019) and needs further ex-
amination. A possible interpretation is the openness degree in western 
China is relatively lower than in eastern China, so the openness degree 
brings a higher marginal effect in western region than in eastern region. 
Furthermore, according to the Pollution Heaven Hypothesis, it should be 
noticed that international trade can probably result in excessive con-
sumption of resources and environmental pollution, which is adverse to 
ULUE, especially for those areas with high openness degrees (An et al., 
2021; Lu et al., 2020). This can partially explain the negative coefficients 
in a few cities. In terms of the investment in real estate, one possible 
reason for the negative association in most western and eastern cities 
over time is that the conversion of urban land use to residential purpose 
results in diminished socioeconomic returns, thereby leading to a 
decrease in ULUE within these cities (Song et al., 2022). 

The positive association between population density and ULUE can 
be explained as follows. The growth of labor improves productivity, 
which strengthens the economic effects of urban lands to some degree. 
Therefore, the positive coefficient of population density in Southern 
China in the early stage can be partially explained by labor inflow (Chan, 
2012). Similarly, the increasing labor flow to western cities improves the 
vitality of urban land use because of the West China Development. 
However, the increase in population denisity will probably result in 
excessive urban expansion and resource consumption, which negatively 
influences ULUE. Such association is presented in the majority of cities 
since 2015, which is corresponding to previous studies (Yu et al., 2019). 
In addition, a long-term and strong negative relation between popula-
tion density and ULUE in cities of the southwestern economic zone and 
the Yangtze River midstream economic zone can be probably explained 
as the positive correlation between population density and PM2.5 con-
centrations (Liu et al., 2020). Nighttime light can partially reflect eco-
nomic activities and urbanization levels. For one thing, frequent 
economic activities can increase economic outputs. For another, such 
activities are closely related to PM2.5 concentrations and CO2 emis-
sions, which increase undesirable outputs of urban lands (Zhao et al., 
2019; Zhao & Xu, 2021). Therefore, the positive coefficient in Southern 
cities can probably be explained as a greater increase in economic 
benefits than environmental pollution, while the negative coefficient in 
northern cities can be explained as greater pollution than economic 
growth. Furthermore, the interesting pattern shown in northeast China 
can partially be explained as the transformation of economic produc-
tion. Specifically, due to the underdeveloped industry, economic activ-
ities in the early stage were inefficient, with high consumption and 
pollution, resulting in a negative relation between nighttime light and 
ULUE. Since 2015, the updated economic activities contributed to effi-
cient production, resulting in a positive correlation between nighttime 
light and ULUE in the northeast economic zone. 

Per capita urban roads is supposed to have a mixed impact on ULUE. 
On one hand, high accessibility benefits organic economic growth, 
which positively influences ULUE (Song et al., 2022). On the other hand, 
the transportation network probably causes landscape fragmentation 
and environmental disruption, which have negative impacts on ULUE 
(He et al., 2020). Therefore, for cities with slow urban expansion, such 
as cities in the northwestern economic zone and cities in the northeast 
economic zone, per capita urban roads contributed to urbanization and 
economic growth, showing an increasingly positive correlation. On the 
contrary, for cities with rapid urban expansion, especially certain coastal 
cities in the southern coastal economic zone and the northern coastal 
economic zone, per capita urban roads was negatively related to ULUE. 
Moreover, with the development of urbanization, the positive exter-
nalities of per capita urban roads on ULUE in northern China, especially 

cities in the northern coastal economic zone, gradually transferred to 
negative, while the negative externalities of per capita urban roads in 
southern and eastern cities strengthened. Furthermore, technological 
development can significantly improve ULUE by upgrading the indus-
trial structure, eliminating industry with backward production, and 
reducing industrial and domestic pollution (Han et al., 2020). The 
findings demonstrate that such positive influence weakens from coastal 
cities to inland cities and strengthens over time. Furthermore, the 
negative relation between Investment in technology and science and 
ULUE in western cities and northeastern cities is likely due to the low 
level of technological development. 

5.3. Policy implication 

Sustainable urbanization under the green development initiatives 
requires rational and efficient utilization of urban land. To improve 
ULUE, some policy recommendations are proposed. Firstly, it is neces-
sary to increase investment in technology and science to promote 
technological innovation and develop high-tech techniques. Relying on 
technological innovation, the government may accelerate industrial 
structure upgrading, and develop high-tech industry to reduce energy 
consumption and industrial pollution. Particularly, for industrial bases 
in northeast China, it needs to develop environmental-friendly equip-
ment manufacturing, which can re-stimulate the industrial vitality in 
this area. Moreover, the government should further promote techno-
logical innovation in west China and coordinate the allocation of in-
vestment between Coastal regions and inland regions. This is especially 
important considering that the northwest regions exhibited the most 
pronounced positive effects of technological innovation on ULUE. Sec-
ondly, the government is supposed to strengthen international trade and 
attract more foreign investment to adjust the industrial structure. 
Meanwhile, the government should pay attention to the types of foreign 
investment as some labor-intensive industries may negatively influence 
ULUE over time, especially in southern China. To avoid the occurrence 
of the Pollution Heaven Hypothesis, foreign investment should be 
encouraged in high-tech intensive industries rather than labor-intensive 
industries. 

Thirdly, considering population density has negative impacts on 
ULUE in most cities, it is necessary to adjust the spatial structure of the 
population. The government should improve the policy to attract talent 
migration from east to west, which can ease the pressure on the popu-
lation in eastern cities and increase the vitality of economic growth in 
western cities. This is also an essential way of ensuring reasonable 
allocation of labor resources, which contributes to regional integration 
and regional coordination. Finally, the government should balance 
urban development and environmental protection to achieve sustain-
able urbanization. Specifically, it needs to avoid excessive expansion of 
urban areas, and protect the green resources including croplands and 
forests in the process of urban expansion. Besides, it is essential to 
evaluate urban land use from the green development perspective, with 
particular attention paid to accurately quantifying emissions of solid 
waste, greenhouse gases, and air pollutants. 

5.4. Limitations and future work 

Despite the insights of the study, it still has several limitations. 
Firstly, the combined usage of remote sensing data and statistical data 
could introduce uncertainties, as these distinct data-collection ap-
proaches might result in potential spatial and temporal mismatches. 
Second, considering data availability, we only considered the direct CO2 
emissions from fossil fuels based on the ODIAC dataset, which may 
underestimate the undesirable output of CO2 emissions. CO2 emissions 
can be also produced by other energy such as electricity, and by diverse 
types of land use directly or indirectly (Cao et al., 2019). In addition, 
Chen, Yu, et al. (2020a) provided a method for estimating more accurate 
and higher-resolution CO2 emissions based on DMSP/OLS and 
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NPP/VIIRS satellite imagery, which has the potential to estimate more 
accurate undesirable outputs and contributes to a more accurate eval-
uation of ULUE under the concept of green development in further 
studies. 

Third, due to the complex mechanism of spatiotemporal variation of 
ULUE, although we described and explained the general picture of ULUE 
and its determinants in this study, the selected indicators could not fully 
explain the spatiotemporal dynamics of ULUE. Some basic indicators, 
such as urban form, marketization, and environmental regulation were 
not included in this study (Wang & Shen, 2016; Wu et al., 2020; Yang 
et al., 2020). Future works may consider the individual and interactive 
impacts of other socioeconomic and environmental factors on ULUE by 
employing appropriate methods. For example, the geographic detector 
model is suitable for detecting whether any two factors will have a 
greater or weaker impact on ULUE than a single factor (Wang et al., 
2010). Apart from data and methodological aspects, to understand the 
disparities of ULUE among eight economic zones under the background 
of regional integration, more studies can be conducted to further 
investigate the ULUE in eight economic zones from the perspective of 
cluster analysis and efficiency decomposition (Yu et al., 2019). Overall, 
the evolution of ULUE and its driving mechanism could be more deeply 
analyzed from diverse perspectives by using multiple data and 
multi-disciplinary methods. 

6. Conclusion 

This study examined the ULUE under green development orientation 
in 284 Chinese cities and eight economic zones and the spatiotemporal 
non-stationary effects of its potential determinants. This study identified 
the spatial and temporal evolution of green development oriented ULUE 

and highlighted the spatiotemporal heterogeneity of its association with 
socioeconomic activities. To address the deficiencies of existing studies, 
this study combined remote sensing data and statistical data to incor-
porate CO2 emissions, PM 2.5 concentrations, as well as other socio-
economic and eco-environmental effects in the estimation of ULUE. We 
further revealed the spatiotemporal dynamics of socioeconomic effects 
on ULUE by using the GTWR model, providing more robust evidence for 
policymakers to implement tailored strategies. The findings show that 
ULUE in Chinese cities generally increased from 2005 to 2019, with the 
highest level in coastal regions and certain northwestern regions. We 
suggest that ULUE can be improved by increasing technological inno-
vation, upgrading industrial structure, improving openness degrees and 
international trade, adjusting urban structure, and establishing an effi-
cient evaluation system for urban land use. Meanwhile, the decision- 
makers should adjust policies considering local conditions including 
historical development, urbanization degree, the future development 
direction, in other to achieve coordinated development of efficient 
urban growth under the green development orientation. 
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Appendix  

Table A1 
Independent variables of ULUE  

Variable Description Observation Mean Std. dev Max Min Unit 

Dependent variable 
ULUE Urban land use efficiency 4260 0.46 0.26 1.59 0.08 – 
Independent variables 
PGDP Per capita GDP 4260 35,484.86 28,551.81 397,976.1 2396 10,000 yuan 
TECH Investment in technology and science 4260 61,083.27 228,732.9 4,273,784 0.13 10,000 yuan 
REI Investment in real estate 4260 1,988,429 3,746,965 50,113,283 4606.27 10,000 yuan 
OPEN The degree of openness 4260 6,759,039 25,026,699 283,000,000 15.11 10,000 yuan 
IDS Industrial structure 4260 47.65 11.07 90.97 10.68 Percent 
PD Population density 4260 3750.15 2791.83 20,093 27 Person/km2 

ROAD Per capita urban roads 4260 15.37 6.98 60.07 0.39 km2/person 
NTL Nighttime light value 4260 0.84 1.82 20.85 0.003 –   

Table A2 
Global spatial autocorrelation result  

Year Moran’s I index Z score P-value 

2005 0.1479 6.0998 0.0000 
2006 0.0999 4.1777 0.0000 
2007 0.0737 3.1107 0.0017 
2008 0.0885 3.7141 0.0002 
2009 0.1310 5.4267 0.0000 
2010 0.1159 4.8206 0.0000 
2011 0.0937 3.9244 0.0000 
2012 0.1211 5.0144 0.0000 
2013 0.0609 2.5911 0.0096 
2014 0.0702 3.6493 0.0002 
2015 0.1027 4.2594 0.0000 
2016 0.1357 5.5812 0.0000 
2017 0.1423 5.8300 0.0000 
2018 0.1085 4.4854 0.0000 
2019 0.1049 4.3433 0.0000 
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Table A3 
Regression results of each model   

R2 Adj. R2 Bandwidth AICc 

OLS 0.247 – – − 4199.12 
TWR 0.282 0.280 0.152 − 4339.08 
GWR 0.408 0.407 0.115 − 5105.69 
GTWR 0.443 0.442 0.115 − 5259.49  

Fig. A1. Spatial heterogeneity of correlation between PD, NTL and ULUE.   
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Fig. A2. Spatial heterogeneity of correlation between ROAD, TECH and ULUE.  
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