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A B S T R A C T   

Transit-oriented development (TOD) planning strategy has been widely implemented worldwide to formulate 
dense, mixed-use built environment in the past three decades. The primary goal of TOD is to promote public 
transit usage including both transit mode share and ridership. Research supports that built environment char
acteristics around metro stations affect residents’ travel behaviors and metro usage. However, the evidence 
remains inconsistent in different urban contexts. Furthermore, research focusing on mode share such as 
commuting trips at station level is still scarce. In this study, a rule-based model was used to identify commuting 
trips using metro service with smart card data (SCD), covering more than 90 percent of all metro passengers in 
Wuhan, China. Built environment characteristics around metro stations were measured with a 3Ds framework 
(density, diversity, and design). Results suggest that population density is negatively associated with metro 
commuting mode share, while street intersection shows a positive relationship. Office-oriented urban function 
and street intersection are positively correlated with metro ridership. Hence, exploring the fine-grained rela
tionship of metro usage and built environment factors around transit stations in different urban and social 
contexts warrants further research attention.   

1. Introduction 

Many global cities have witnessed rapid urbanization and increased 
private car use recently, which lead to far-reaching negative conse
quences such as traffic congestion, urban sprawl, environmental pollu
tion and physical inactivity (Bertolini et al., 2012; Cervero et al., 2004; 
Frank et al., 2019). Urban planning interventions to reduce car use and 
its associated urban problems have been an important research focus in 
recent decades. Since the early 1990s, transit-oriented development 
(TOD) systematically elaborated by Calthorpe (Calthorpe, 1993) has 
gained extensive attention as an effective and promising approach to 
address these concerns. 

TOD generally has the following principles: including mixed land 
use, dense residential population, accessible transits, pedestrain-friendly 
envrionment, compact urban form around transit stops (e.g., metro 
station, light rail station or bus stop) (Calthorpe, 1993; Cervero et al., 

2004; Singh et al., 2017). TOD planning principles are widely adopted to 
shape urban development in North America, Europe, Australia, and 
some Asia governments. For example, TOD strategy is primarily 
implemented to limit urban sprawl and reduce car dependency in 
American cities (Guerra, 2014). In Europe, TOD is generally introduced 
in urban renewal programs (Bertolini et al., 2012). 

China has been experiencing a rapid urbanization process accom
panied with urban population expansion since the 1990s (Zhao et al., 
2018). Many large cities in China have built or plan to build urban rail 
transit system as a sustainable development mode to cope with rapid 
urbanization and population aggregation, alleviate traffic congestion 
and living environment deteriorating, and boost their economy (Cervero 
and Day, 2008; Huang et al., 2017; Wu and Hong, 2017; Zhao et al., 
2018; Zhou, 2016). Since 2011, the central government has planned a 
transit-oriented metropolis program to fund many large cities around 
the nation to implement TOD projects (Zhou, 2016). 
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A substantial body of literature has evaluated TOD impacts on 
various performance and outcomes (Arrington and Cervero, 2008), such 
as on property values (Duncan, 2010; Pan and Zhang, 2008), relocation 
of job and housing (Pagliara and Papa, 2011), travel behavior (Huang 
et al., 2019; Wu and Hong, 2017), and station area accessibility (Lyu 
et al., 2020; Papa and Bertolini, 2015). Among all performance and 
outcomes, the primary one is to increase transit ridership and reduce car 
dependency (Cervero et al., 2004; Singh et al., 2017). 

The built environment characteristics around transit stops can exert 
an influence on transit usage (Ding et al., 2019; Ewing and Cervero, 
2010; Loo et al., 2010). Some studies suggest that higher density in 
station service area can induce travel demand and increase transit 
ridership (Arrington and Cervero, 2008; Nasri and Zhang, 2014). 
However, other studies report inconsistent findings. For instance, land 
use mix is positively correlated with metro ridership in Seoul (Sung and 
Oh, 2011) and Nanjing (Zhao et al., 2013), but not in New York (Loo 
et al., 2010). The inconsistent findings may be due to different urban 
contexts, as well as inherent data limitations associated with widely- 
used travel survey data (Nasri and Zhang, 2014; Park et al., 2018). For 
example, the sample size and study areas of travel survey is limited and 
may be unrepresentative to the whole population. 

Recently, urban big data (e.g., smart sard data, SCD) bring new op
portunities to assess travel behaviors. Big data can accurately monitor 
travel behaviors in more fine-grained spatiotemporal resolution for all 
urban residents using smart card system. Hence, SCD can make up for 
shortcomings of traditional travel survey data with a larger and more 
representative sample of passengers’ travel behaviors (Huang et al., 
2018; Sung and Oh, 2011; Zhou et al., 2019). Most studies using SCD 
focused on boarding and alighting ridership at station level (Jun et al., 
2015; Loo et al., 2010; Zhao et al., 2013). Studies also investigated travel 
mode choice in TOD areas versus non-TOD areas by travel survey (Nasri 
and Zhang, 2014; Shen et al., 2016). To date, research focusing on mode 
share such as commuting trips at station level is still scarce. In this study, 
we identified commuting trips using metro service with SCD, covering 
more than 90 percent of all metro passengers in Wuhan, China. Metro 
usage for commuting mode share and metro ridership were measured to 
investigate association with built environment characteristics at station 
level. 

2. Literature review 

2.1. TOD around the world and in China 

The potential benefits of TOD to integrate urban development with 
rail networks make it a popular practice in urban planning worldwide. 
Many American cities have seen a rebound in rail transit program to 
increase development density and diversity, centralize suburban sprawl, 
and create pedestrian-friendly urban design near transit nodes (Guerra, 
2014). In Australia, for instance, Brisbane has actively carried out a 
strong TOD approach following the principles including diverse land use 
patterns and higher employment density to foster a vibrant community, 
higher residential density to support frequent public transport service, 
well-connected street network to increase street movement and pedes
trian activity (Kamruzzaman et al., 2016). In Europe, TOD was able to 
shape suburban development into satellite suburbs along transit corri
dors (Singh et al., 2017), and put in practice in urban redevelopment 
programs (Bertolini et al., 2012). 

China is a newcomer in TOD implementation. However, TOD and 
metro construction projects have dramatically increased in the past 
decade. In 2016, more than 3000 km of metro lines has been constructed 
and another 3000 km has been planned with an annual investment of 
300 billion Yuan (Zhao and Li, 2018). The China central government 
encourages metro construction to integrate land use with transportation 
development, and shape sustainable mobility in the future. Nonetheless, 
only a handful of studies focused on metro ridership and mode choice 
with TOD in China such as Shanghai and Nanjing (An et al., 2019; Shen 

et al., 2016; Zhao et al., 2013). The relationship between TOD outcomes 
and the built environment characteristics in station area remains unclear 
under Chinese urban context. 

2.2. TOD’s performances and outcomes 

Many studies suggest that TOD strategy can help to achieve a host of 
social, economic, and environmental goals with intense and mixed land 
use, healthy and equitable mobility. Compelling evidence, from San 
Diego, Seoul, Beijing and Shanghai, confirms that TOD can improve 
transit accessibility and increase urban density (Duncan, 2010; Pan and 
Zhang, 2008; Sung and Oh, 2011; Zhang and Wang, 2013). An appro
priate TOD planning achieves more efficient land use patterns, which is 
able to attract residential and commercial activities, and prevent urban 
sprawl in the long run (Ratner and Goetz, 2013; Singh et al., 2017). 
Additionally, if combined with favorable urban design, TOD can reduce 
car dependency and promote more sustainable travel modes, e.g. 
walking, cycling, and public transit (Huang et al., 2017; Loo and du 
Verle, 2017; Nasri and Zhang, 2014). In this sense, TOD is in line with 
active living planning goals that can reinforce residents’ active travel 
behaviors in shaping more sustainable mobility (Frank et al., 2019; Zhao 
and Li, 2018). 

Numerous studies have developed methods and tools to evaluate 
TOD based on the built environment characteristics around transit stops. 
The most widely used is the node-place model, which evaluate the 
balance between land use-driven demand and transportation-driven 
supply (Kamruzzaman et al., 2014; Li et al., 2019; Lyu et al., 2016; 
Singh et al., 2017). Based on this model, all station areas should strive a 
balance between transport and land use. Hence, stressed transit node 
(where demand > supply) needs to increase transit service; stressed 
place (where demand < supply) needs to promote density and diversity 
in station service area. 

Several studies assessed the impact of TOD on travel behaviors and 
transit ridership (Nasri and Zhang, 2014; Pan et al., 2017; Park et al., 
2018; Wu and Hong, 2017; Zhao et al., 2014). For instance, direct 
ridership model is widely used to investigate factors affecting transit 
ridership (Cardozo et al., 2012; Durning and Townsend, 2015; Jun et al., 
2015; Zhao et al., 2013). Arrington and Cervero (Arrington and Cervero, 
2008) analyzed 17 TOD projects and found that people living in TOD 
areas use transit for commuting trips more frequently compared to those 
living in non-TOD areas. Using household survey data collected sur
rounding eight rail stations, Noland and DiPetrillo (Noland and DiPet
rillo, 2015) found that residents living in TOD use public transit more 
frequently and drive less frequently than those living farther out. Nasri 
and Zhang (Nasri and Zhang, 2014) suggest that people living in TOD 
areas tend to reduce vehicles miles traveled compared to non-TOD areas 
even with similar land use patterns. 

2.3. Built environment factors and transit usage 

In addition to proximity of transit stations (i.e., TOD and non-TOD 
areas) (Nasri and Zhang, 2014; Noland and DiPetrillo, 2015), built 
environment factors around transit stations also shape residents’ travel 
behaviors (Ewing and Cervero, 2010; Sung and Oh, 2011; Vergel-Tovar 
and Rodriguez, 2018). These built environment factors may play more 
important role than transit service (i.e., frequency, speed of rail opera
tion) and passengers’ socioeconomic status in determining transit 
ridership (Durning and Townsend, 2015; Loo et al., 2010; Sung and Oh, 
2011; Walton and Sunseri, 2010). In a synthesis review (Ewing and 
Cervero, 2010), a 3Ds framework, including Density, Diversity and 
Design, have been identified as major built environment factors shaping 
various travel mode choice, e.g., transit ridership. 

Density is considered the most influential factor. High urban density 
attracts the concentration of population, employment and destinations 
to support public transit use (Durning and Townsend, 2015; Nasri and 
Zhang, 2014; Vergel-Tovar and Rodriguez, 2018). However, researchers 
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disagree with which types of density is more influential. Using house
hold travel survey data, Park and colleagues (Park et al., 2018) found 
that density plays weaker role on transit use than street network design 
and land use diversity. Nasri and Zhang (Nasri and Zhang, 2014) sug
gested that higher employment density is linked with higher transit use 
based on travel survey. Loo and colleagues (Loo et al., 2010) indicated 
that population density and commercial-related land use explain rail 
ridership in New York and Hong Kong using smart card data. Similarly, 
positive association of population, employment, residential and com
mercial density with metro ridership was found in Seoul (Jun et al., 
2015; Sung and Oh, 2011). 

Diversity also shapes public transit use behavior. Mixed land use in
crease the propensity of walking to and from transit stops for different 
purposes (Ewing and Cervero, 2010). It has been confirmed in some 
studies (Jun et al., 2015; Loo et al., 2010; Park et al., 2018; Sung and Oh, 
2011; Vergel-Tovar and Rodriguez, 2018). For example, Park and col
leagues (Park et al., 2018) found that transit use is strongly correlated 
with land use diversity in station areas of eight U.S. metropolitan areas. 
Similar finding was revealed that higher land use mix associated with 
less vehicle miles traveled and more walking, cycling and transit use 
(Nasri and Zhang, 2014). 

Design, such as street network design, also influences public transit 
usage. Design of street network enhances accessibility to various desti
nations as well as transit stations, and thereby increase transit ridership 
(Park et al., 2018). In particular, well-connected street networks around 
transit stations can shorten walking distance and provide more route 
options for transit use (Ewing and Cervero, 2010; Nasri and Zhang, 
2014). Evidence from New York, Hong Kong and Seoul show that rail 
transit stations located in areas with more street intersections associated 
with more passengers (Loo et al., 2010; Sung and Oh, 2011). 

2.4. The research gaps 

Even though many studies claim that built environment character
istics of TOD areas could impact transit use, there are three major 
research gaps. First, the associations between built environment factors 
and transit usage are still inconclusive. For instance, some studies sug
gest that land use mix is strongly corelated with transit use and ridership 
(Jun et al., 2015; Park et al., 2018), while such association is not found 
in some other studies (Lin and Shin, 2008; Loo et al., 2010). The 
inconsistent finding is partially due to different urban contexts with 
distinctive built environment characteristics. Existing studies usually 

Fig. 1. The study area in Wuhan and 500-m radius station served buffers.  
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focused on cities in developed countries, whereas transit usage and TOD 
in China has not been fully investigated. 

Second, traditional travel survey has inherent data limitations such 
small sample size which could cause potential bias (Nasri and Zhang, 
2014; Park et al., 2018). Recently, the emerging of big data such as 
transit smart card data (SCD) provides new opportunities to assess 
transit usage. The new data sources have overcome such bias (Huang 
et al., 2018). SCD has large data volume with abundant spatiotemporal 
travel information of cardholders compared with traditional small travel 
survey data. Large datasets generated by SCD provide accurate records 
of cardholders’ trip information to better represent travel behaviors 
(Huang et al., 2018; Pelletier et al., 2011). Although such data sources 
lacking specific travel purposes, many aspects of passenger travel be
haviors can be inferred from smart card data when travel patterns are 
regular. There are many studies have been able to infer origin and 
destination from smart card data (Huang et al., 2018; Pelletier et al., 
2011; Zhou and Long, 2014). For instance, Hasan and colleagues (Hasan 
et al., 2013) proposed a simple frequency-based mobility model pre
dicting that the most frequently visited places were home locations for 
individuals, whereas the second-most-visited paces were considered as 
the work locations. Studies also developed rule-based models (e.g., time 
threshold and frequency) for fulltime worker to identify home and work 
locations (Huang et al., 2019; Zhou and Long, 2014). 

Third, it remains unclear what built environment factors at station 
level could impact metro usage, especially for commuting trips. Even 
though we already know that the residents in TOD areas tend to use 
public transit to commute compared with non-TOD areas by survey 
(Arrington and Cervero, 2008; Shen et al., 2016; Wu and Hong, 2017). 
Studies also developed regression models for ridership characteristics 
with built environment characteristics at station level (An et al., 2019; 
Sung and Oh, 2011; Zhao et al., 2013) and station-to-station level (Gan 
et al., 2020; Zhao et al., 2014). However, research focusing on metro 
mode share such as commuting trips at station level is still scarce. 

In this study, we investigated the association between built envi
ronment characteristics and metro usage (i.e., metro mode share and 
ridership for commuting trips, and overall metro ridership) at station 
level with big data from SCD in Wuhan, China. More specifically, we 
developed a rule-based model using SCD to identify commuting trips 
with metro service. And metro mode share for commuting trips was 
measured. This study could contribute TOD research on mode choice at 
station level. The findings from this study would generate insights under 
Chinese urban contexts and help decision-makers improve metro usage 
of commuting trips through built environment interventions around 
transit stations. 

3. Method 

3.1. Data and study area 

Wuhan is the capital city of Hubei province and the economic, 

political and cultural center in central China. As of 2015, Wuhan 
accommodated 10.3 million residents and most of the dwellers live in 
the main urban area. For example, Hankou district, the most represen
tative urban area, had a resident population of 2.5 million within an area 
of 148.6 km2. Its population density reaches a level of 16,824 person/ 
km2 in this district, making it a densely populated region. 

To investigate the relationship between built environment factors 
and transit-oriented development (TOD) outcomes (i.e., metro 
commuting mode share, commuting ridership and metro ridership), we 
focused on metro station service area within a 500-meter radius buffer 
which is an appropriate scale to measure station catchment area of the 
stations. In 2015, there are three metro lines including 75 metro stations 
in Wuhan. The metro station service area is within urbanized region that 
is Hankou, Wuchang, and Hanyang district, which is regarded as the 
main urban area. Fig. 1 illustrates our study area, urban metro lines and 
the 500-m radius station served buffers in this study. 

3.2. Outcomes of metro usage 

We identified commuting trips and overall ridership with metro from 
one-week metro smart card data (SCD) from March 23 to 29 in 2015. 
Among the three metro lines in 2015, smart cards have been swiped 
around 2.5 million times per day, covering more than 90% of metro trips 
in Wuhan. The smart card data used in this study has a set of card
holders’ travel information including unique card ID number (which 
may represent unique cardholders because most people used only one 
card during the study period), boarding or alighting stations, boarding 
or alighting time. 

The overall metro ridership for each station was directly counted 
with SCD and further classified by different periods of a day (peak-hour 
7AM-9AM vs. non-peak-hour 9AM-12AM), different days of the week 
(weekday vs. weekend) (Sung and Oh, 2011). We used Tuesday and 
Saturday SCD record to represent weekday and weekend respectively. 
There are 2,565,858 boarding and alighting records for weekday, and 
3,168,024 for weekend. 

We further extracted metro commuting trips with a rule-based model 
using the five-day weekday SCD records of one week. Two-day weekend 
SCD records were excluded to avoid bias because we assume that most 
commuting trips occur in weekdays. SCD in weekdays contain 
13,060,164 records, and 2,227,391 unique cardholders in total. Firstly, 
we retrieve daily metro travel diary for all cardholders by combining 
their metro trips in each day. Then, we developed a one-day job-housing 
commuting model to identify the home and work location (represented 
by metro station). For cardholder with smart card number N, daily 
boarding travel dairy (Eq. (1)) can be summarized as: 

N : [t1 : s1, t2 : s2, ..., tk : sk] (1) 

In this travel dairy, t represents time (ti < tj), s stands for station, and 
k donates number of metro boarding records. Following this, the 
boarding time, boarding station on each day can be reconstructed for 

Fig. 2. The process to identify metro commuters.  
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each cardholder using this data model. The home (H) and work (W) 
location are identified using the boarding travel diary following the one- 
day rules (Eq. (2)) below. 

H = s1&t1⩽10 : 00  

W = sp&tp⩾16 : 30 &tp− 1 < 16 : 30 (2 ⩽ p ⩽ k) (2) 

The model rules can be interpreted that, for a boarding travel diary of 
a commuter who has a full-time job, the home location is supposed to be 
the first departure station before 10:00 am; the work location should be 
the first boarding station after 16:30. Meanwhile, the minimum time 
interval between morning and afternoon boarding time is 6.5 h which is 
a suitable range for a full-time job. The home and workplace are 
assumed to be within walking distance of a metro station. In this way, if 
the travel diary meets the model rules, we assumed that this cardholder 
has one-day commuting trips. 

A total of 739,714 commuting trips were identified from SCD in 
weekdays. The cardholders with at least two days’ commuting trips were 
treated commuters, which were assessed based on the card ID number. 
Because the home and work station identified from a same cardholder 
may differ by different days, we proposed a maximum-frequency rule to 
solve potential conflicts. For example, one cardholder may be identified 
to use place A as home in three days, and to use place B as home in the 
other two days. Then, the place with maximum frequency (place A) will 
be used as home. In case, place A and B have equal frequency (say two 
days each), the place exhibits the greatest residential potential is 
regarded as home. The concept of “residential potential” was based on 
the land use pattern in station service area. Similarly, the maximum- 
frequency rule was used to identify work station. The identification of 
home and work station was independent. Finally, 149,593 unique 
commuters were identified with home (origin) and work (destination) 
station of commuting trips which account for 6.7% of total cardholders 
in weekdays. The process to identify metro commuters is illustrated in 
Fig. 2. 

Furthermore, metro mode share for commuting trips was calculated 
by the ratio between metro commuting origin trips and all residential 

population aged 19–59 within the station buffer. All residents aged 
19–59 could largely represent overall commuters in the buffer, because 
the unemployment rate for this population group is <5% in Wuhan 
(Bureau Statistics, 2016). The equation for mode share is as follows (Eq. 
(3)): 

ModeShare =
NTo

∑k
i (Aib/Aic) × Pi

(3)  

where NTo is the number of commuting origin trips in the target station; 
Aib, Aic are the area of community i in the station buffer zone, and the 
total area of community i respectively; Pi is the population size aged 
19–59 of community i; k is the number of communities that intersected 
in the station buffer zone. The community is a spatial administrative unit 
in Wuhan. The 500-m station buffer generally intersected with around 
10 communities (Fig. 3). Yet, three metro stations in suburban areas can 
only intersect with one or two communities because these suburban 
communities are larger but less densely populated. Hence, these three 
stations have mode share value greater than 1. We tentatively increase 
population size aged 19–59 in catchment area by 50% of the community 
population to avoid potential outliers of mode share value. 

Number of origin trips and destination trips of the metro commuters 
in each station were also considered as TOD outcomes. Weekday and 
weekend metro ridership were measured using Tuesday and Saturday 
SCD record respectively. Daily ridership on weekday and weekend were 
added up by daily boarding ridership. Boarding and alighting ridership 
in peak-hour (7AM-9AM), and alighting ridership in non-peak-hour 
(9AM-12AM) were considered both on weekday and weekend. Table 3 
illustrates the dependent variables of metro usage at station level and 
summary statistics. 

3.3. Built environment factors 

The built environment factors are assessed according to the 3Ds 
framework (Ewing and Cervero, 2010; Lu et al., 2017) including density, 
diversity and design. The built environment variables were obtained and 
measured using geographic census data and point of interest (POI) data 
in ArcGIS 10.5. As a new form of urban geographic data retrieved from 
Gaode Map (https://lbs.amap.com/api/webservice), POI data provide 
more comprehensive information for spatial analysis in urban space 
compared with land use data. Therefore, the study developed residen
tial, commercial, office POI density variables and POI mix for three 
(residential, commercial, and office) to make a more inclusive frame
work of built environment factors. It should be noted that, POI data in 
Gaode map were divided into two category levels that are macro- and 
micro-levels. There are 23 macro-level categories and more than 200 
micro-level categories in original Gaode POI dataset. Different cate
gories of POI may have different impact on ridership. For instance, office 
building may have stronger impact than a convenient shop. To avoid 

Fig. 3. Community and the built environment factors in station served buffer.  

Table 1 
Mid-categories in Gaode Map of three POI categories.  

Categories Micro-level categories in Gaode Map Count Percentage 

Residential 
POI 

Residential building 2321  9.1% 

Commercial 
POI 

Clothing store, sports store, Chinese food 
restaurant, fast food restaurant, hotel, 
recreation center 

15,396  60.3% 

Office POI Company, enterprises, bank, finance & 
insurance service institution, 
governmental organization 

7797  30.6%  
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heterogeneity of POI categories, our study sampled a small part repre
sentative micro-level categories in Gaode Map as residential, commer
cial, and office POIs based on their functionality and quantity. Table 1 
shows the details of classification of POI dataset.  

• Density. Population density, building floor area, residential land 
ratio, commercial land ratio, office land ratio, and residential POI 
density, commercial POI density, and office POI density are selected 
as density factors of the built environment. Population density is 
measured by population size within 500-m radius buffer using 
community-level population data, as it is measured in metro 
commuting mode share. Building density is assessed by total building 
floor area of all buildings contained in a station buffer. Land-use 
ratios of residential, commercial, and office land are measured by 
different land use area divided by station buffer area. Three land uses 
were re-classified by land block functionality in raw land use dataset 
based on national standard (Standard, 2014). For instance, com
mercial land usually includes land use for business and entertain
ment facilities; office land usually includes land use for 
administration, office affairs, hospital, and school; other land use 
generally refers to land use for industrial, transportation, green space 
and barren land. And residential, commercial and office POI density 
are assessed by number of POIs of each category in a station buffer.  

• Diversity. Land use mix for four (residential, commercial, office, and 
other land use) and land use mix of two (residential, and other land 
use) are taken into consideration as indicators of land use diversity. 
We considered land use mix of two because the residential land ratio 
is usually higher (Mean = 0.340). Additionally, POI mix for three 
(residential, commercial, and office POI) is employed to measure 
built environment diversity. The entropy score derived from 

Shannon diversity (Manaugh and Kreider, 2013; Shannon, 1948) is 
applied to measure land use mix and POI mix as follows (Eq. (4)): 

Mix = −
∑k

i=1
(pilnpi)/lnk (4) 

in which pi is the ratio of the i th category of land use or POI, and k 
depending on the number of different land uses or POI types present in 
station buffer.  

• Design. Street length, and number of street intersection were taken as 
design indicators for street network. Street network is derived from 
Open Street Map and census data. Node that connected with more 
than three street segments is taken as an intersection. Moreover, 
number of metro station exit, number of bus station, number of bus 
line were also regarded as design factors. Both directions, if any, of 
each bus line are included. 

3.4. Data analysis 

As the dependent variables, metro commuting characteristics are 
represented by origin, destination trips, and mode share in each station. 
Metro ridership is classified into weekday and weekend, peak hour and 
non-peak hour, and boarding and alighting, because they varied by 
travel purpose and station service area’s features. For instance, metro 
commuting origin trips might be higher in the residential-oriented metro 
station in the peak time. Built environment factors based on the 3Ds 
framework are regarded as predictors for outcomes of metro usage. All 
of the independent variables were collected near 2015. 

Before developing regression models to investigate the relationship 
between built environment factors and outcomes of metro usage, 

Table 2 
Summary statistics of dependent variables of metro usage and independent variables of built environment. (N = 75 stations).  

Variables (Unit) Mean SD Min Max VIF1 VIF2 

Dependent variables  
Commuting mode share (0–1)  0.250  0.221 0.026 0.822    
Commuting origin trips (N)  1994.573  1650.107 29 9029    
Commuting destination trips (N)  2004.481  2139.229 36 9533    
Weekday daily boarding (N)  17161.187  15532.857 1232 89,618    
Weekday peak boarding (N)  3262.773  2593.237 118 15,890    
Weekday peak alighting (N)  3043.693  2905.324 108 14,088    
Weekday non-peak alighting (N)  2927.187  3022.763 155 15,517    
Weekend daily boarding (N)  21201.547  22729.779 1199 145,855    
Weekend peak boarding (N)  2622.627  2269.347 114 15,748    
Weekend peak alighting (N)  2341.427  2344.569 101 13,008    
Weekend non-peak alighting (N)  4040.4  4595.525 184 26,087    

Independent variables 
Density Population density (10000 N)  1.677  1.120 0.079 4.486  6.885  3.901  

Building floor area (km2)  0.914  0.491 0.012 1.988  7.635  —  
Residential land ratio (0–1)  0.340  0.148 0.059 0.668  7.733  3.123  
Commercial land ratio (0–1)  0.116  0.092 0.002 0.457  2.732  2.512  
Office land ratio (0–1)  0.127  0.114 0 0.603  3.164  2.955  
Residential POI density (10 N)  3.227  2.709 0.1 12.1  9.090  —  
Commercial POI density (10 N)  22.072  30.069 0 155.8  4.184  3.688  
Office POI density (10 N)  11.117  12.59 0 55.9  5.905  4.815  

Diversity Land use mix for four (0–1)  0.798  0.144 0.292 0.997  5.389  3.566  
Land use mix of two (0–1)  0.851  0.178 0.323 0.998  8.012  —  
POI mix for three (0–1)  0.766  0.163 0.283 0.989  1.894  1.640  

Design Number of metro exit (N)  4.160  1.480 2 10  1.672  1.602  
Number of bus station (N)  9.333  5.006 1 35  1.959  1.930  
Number of bus line (N)  40.227  28.556 1 118  3.235  2.789  
Street length (km)  14.206  4.27 2.764 24.73  4.886  4.141  
Number of street intersection (N)  44.773  20.411 8 92  4.252  3.545 

Note: SD = Standard Deviation; Min = Minimum; Max = Maximum; N = Number. VIF1 and VIF2 indicate variance inflation factor of independent variables before and 
after multicollinearity test. 
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variation inflation factor (VIF) was used to test the multicollinearity 
between the independent variables. Correlation matrix for all indepen
dent variables (see Appendix Table 1) shows that some variables are 
highly correlated such as population density, building floor area, and 
residential POI. We sequentially ruled out built environment variables 
that have the largest VIF above than 5. The VIF of independent variables 
before and after multicollinearity test are illustrated in Table 3. Finally, 
building floor area, residential POI density, and land use mix of two 
were excluded in final regression analysis. 

This study firstly employed ordinary least square (OLS) regression 

(also as “linear regression”) to investigate the association between built 
environment factors and outcomes of metro usage. OLS holds the basic 
assumption that the residual is random. However, the results (e.g., co
efficient size, significance) of the OLS regression could be biased if 
spatial effects exist. For instance, stations that are closer to each other 
also will have a correlation of observations. Therefore, we also consid
ered spatial regression including spatial lag model and spatial error 
model (Anselin, 1988; Anselin and Rey, 1991). We conducted pre-tests 
to determine which model is better. Results show that spatial lag 
model usually has a larger value of log likelihood and smaller value of 
Akaike info criterion (AIC). Hence, we also employed spatial lag model 
(SLM) using Geoda. SLM can be expressed as follows (Eq. (5)): 

y = ρWy +Xβ+ ε (5)  

where ρ is a spatial autocorrelation parameter, and Wy is a spatial weight 
matrix of the spatial lags for the dependent variables at nearby locations. 
Spatial weight was created in Geoda by K-Nearest neighbors of 4. Among 
the 75 stations, minimum neighbor is 1 and maximum neighbor is 4 in 
the spatial weight file. 

Finally, we conduct the OLS regression and SLM to investigate the 
association between built environment characteristics and outcomes of 
metro usage. Notably, all of the dependent variables have been loga
rithmic transformed to achieve better normal distribution (see scatter 
plots between some variables in Appendix). The independent variables 
remain their original format. All of the 75 metro stations were included 
in our regression models. Regression coefficients (β) and p value were 
reported. 

4. Results 

Table 2 illustrates the summary statistics of dependent variables for 
outcomes of metro usage and independent variables for built environ
ment factors. Descriptive statistics includes minimum (Min), maximum 
(Max), mean, and standard deviation (SD) of variables. For example, the 
mean value of metro commuting mode share for each station is 25.0% 
(SD = 22.1%) among the 75 stations. The mean value of population 
density (population size) in station service area is 16,770 persons, and 
mean number of street intersection is 44.773. Average ratio of resi
dential land is 34.0%, while it is 11.6% and 12.7% for commercial and 
office land respectively. Diversity index is high in station buffer that the 
average value for land use mix of four and POI mix of three are 0.798 
and 0.766 respectively. 

Table 3 illustrates the associations between built environment fac
tors and metro commuting ridership. The adjusted R2 of OLS regression 

Table 3 
Regression models to predict metro ridership and mode share for commuting trips. (N = 75 stations).  

Explanatory variables Origin trips Destination trips Mode share 

β (p) OLS β (p) SLM β (p) OLS β (p) SLM β (p) OLS β (p) SLM 

Population density − 0.054, 0.714 − 0.059, 0.654 − 0.009, 0.954 − 0.008, 0.949 − 0.463, 0.003 *** − 0.374, 0.001 *** 
Residential land ratio 1.588, 0.113 1.646, 0.065 * 0.692, 0.453 0.669, 0.423 − 0.358, 0.694 0.217, 0.754 
Commercial land ratio − 1.370, 0.341 − 1.620, 0.226 0.974, 0.486 1.046, 0.420 − 1.136, 0.406 − 0.484, 0.640 
Office land ratio 1.302, 0.301 1.391, 0.218 2.525, 0.040 ** 2.504, 0.022 ** − 0.541, 0.652 − 0.611, 0.503 
Commercial POI density 0.001, 0.963 0.001, 0.913 0.001, 0.967 0.001, 0.959 − 0.001, 0.883 0.001, 0.919 
Office POI density 0.004, 0.763 0.005, 0.731 0.031, 0.018 ** 0.031, 0.008 *** 0.002, 0.858 − 0.001, 0.952 
Land use mix of four 1.214, 0.274 1.265, 0.203 1.110, 0.301 1.076, 0.265 − 0.725, 0.492 − 0.281, 0.725 
POI mix for three 0.372, 0.572 0.374, 0.526 0.448, 0.481 0.445, 0.436 − 0.266, 0.672 − 0.076, 0.873 
Number of metro exit − 0.061, 0.385 − 0.063, 0.317 0.001, 0.985 0.001, 0.983 − 0.071, 0.303 − 0.048, 0.361 
Number of bus station 0.038, 0.096 * 0.039, 0.058 * 0.028, 0.210 0.028, 0.160 0.026, 0.248 0.013, 0.443 
Number of bus line 0.001, 0.896 0.001, 0.895 0.004, 0.359 0.004, 0.302 − 0.006, 0.189 − 0.001, 0.690 
Street length − 0.059, 0.202 − 0.057, 0.168 0.093, 0.283 0.090, 0.251 − 0.078, 0.374 − 0.054, 0.418 
Number of street intersection 0.016, 0.079 * 0.016, 0.049 ** 0.006, 0.387 0.006, 0.333 0.019, 0.024 ** 0.016, 0.011 ** 
Pseudo R2 0.440 0.443 0.735 0.738 0.497 0.639 
Adjusted R2 0.321 — 0.678 — 0.389 — 

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. β = coefficient. p = p value. OLS = Ordinary Least Squares regression. SLM = Spatial Lag Model.  

Table 4 
Regression models to predict metro boarding ridership for both weekday and 
weekend. (N = 75 stations).  

Explanatory 
variables 

Weekday boarding ridership Weekend boarding 
ridership 

β (p) OLS β (p) SLM β (p) OLS β (p) SLM 

Population density − 0.012, 
0.931 

− 0.031, 
0.797 

− 0.046, 
0.758 

− 0.063, 
0.629 

Residential land 
ratio 

− 0.020, 
0.981 

0.237, 
0.749 

0.263, 
0.767 

0.551, 
0.485 

Commercial land 
ratio 

0.659, 0.604 − 0.078, 
0.944 

1.851, 
0.166 

1.266, 
0.285 

Office land ratio 2.051, 0.067 * 2.414, 
0.012 ** 

2.913, 
0.015 ** 

3.345, 
0.001 *** 

Commercial POI 
density 

0.002, 0.605 0.002, 
0.525 

0.003, 
0.505 

0.003, 
0.424 

Office POI density 0.013, 0.262 0.015, 
0.130 

0.009, 
0.505 

0.011, 
0.340 

Land use mix of 
four 

0.451, 0.642 0.600, 
0.478 

0.081, 
0.937 

0.143, 
0.872 

POI mix for three − 0.359, 
0.535 

− 0.361, 
0.472 

− 0.901, 
0.142 

− 0.920, 
0.083 * 

Number of metro 
exit 

− 0.028,0.667 − 0.028, 
0.613 

0.006, 
0.925 

0.005, 
0.920 

Number of bus 
station 

0.028, 0.18 0.028, 
0.116 

0.020, 
0.356 

0.020, 
0.288 

Number of bus line 0.003, 0.454 0.002, 
0.464 

0.004, 
0.373 

0.003, 
0.381 

Street length 0.014, 0.856 0.045, 
0.514 

0.002, 
0.982 

0.029, 
0.692 

Number of street 
intersection 

0.011, 0.095 * 0.011, 
0.057 * 

0.013, 
0.101 

0.013, 
0.061 * 

Pseudo R2 0.606 0.629 0.607 0.627 
Adjusted R2 0.522 — 0.524 — 

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. β = coefficient. p = p value. OLS =
Ordinary Least Squares regression. SLM = Spatial Lag Model.  
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model is 0.321 for the commuting origin ridership, 0.678 for the 
commuting destination ridership and 0.389 for mode share. SLM ach
ieves higher goodness of fit than OLS. For instance, R2 of OLS for mode 
share is 0.497, while it reaches 0.639 in SLM. Metro commuting desti
nation ridership is better explained than those of origin ridership by the 
built environment factors. 

Built environment of residential land ratio, number of bus station, 
and number of street intersection are positively associated with metro 
commuting origin ridership in SLM. For the metro commuting destina
tion ridership, office land ratio and office POI density have positive re
lationships. Station buffer area with higher number of street intersection 
tends to have higher metro mode share for commuting trips. However, 
population density is negatively associated with mode share for 
commuting trips. 

Table 4 shows the regression results between built environment 
factors and daily metro boarding ridership on weekday and weekend. 
The adjusted R2 of OLS regression model on weekday ridership is 0.522 
and that for weekend is 0.524. SLM achieves better goodness of fit than 
OLS. Office land ratio is positively associated with both weekday and 
weekend ridership. POI mix is negatively associated with weekend daily 

ridership, but not with weekday ridership. Number of street in
tersections is positively associated with both weekday and weekend 
ridership. 

Table 5 shows the results of regression models fitting metro ridership 
in different time periods (peak and non-peak hours) on weekday. The 
adjusted R2 of OLS regression model are 0.335, 0.627, 0.572 of peak- 
hour boarding, alighting and non-peak-hour alighting ridership. SLM 
achieves higher goodness of fit than OLS. Built environment character
istics can explain peak-hour alighting ridership better than boarding. 
Number of bus station and number of street intersection are positively 
related to peak-hour boarding ridership. Office land ratio, office POI 
density, and number of bus line are positively related to peak-hour 
alighting ridership. During non-peak hours, office land ratio, office 
POI density, and number of street intersection are positively related to 
alighting ridership. 

Table 6 illustrates the results of regression models fitting metro 
ridership in different time periods (peak and non-peak) on weekend. The 
adjusted R2 of OLS regression model are 0.311, 0.558 and 0.554 of peak- 
hour boarding, alighting and non-peak-hour alighting ridership. SLM 
achieves better goodness of fit than OLS. Built environment 

Table 5 
Regression models to predict weekday temporal metro ridership. (N = 75 stations).  

Explanatory variables Peak-hour boarding Peak-hour alighting Non-peak-hour alighting 

β (p) OLS β (p) SLM β (p) OLS β (p) SLM β (p) OLS β (p) SLM 

Population density 0.075, 0.629 0.053, 0.700 0.022, 0.882 0.024, 0.857 − 0.029, 0.848 − 0.032, 0.804 
Residential land ratio 0.476, 0.601 0.651, 0.430 − 0.061, 0.946 0.085, 0.914 − 0.273, 0.758 − 0.029, 0.969 
Commercial land ratio − 0.661, 0.631 − 1.216, 0.337 1.145, 0.396 0.669, 0.585 1.427, 0.288 0.691, 0.560 
Office land ratio 1.395, 0.246 1.618, 0.131 2.102, 0.076 * 2.305, 0.027 ** 2.208, 0.061 * 2.638, 0.009 *** 
Commercial POI density 0.002, 0.707 0.002, 0.601 − 0.002, 0.625 − 0.003, 0.550 0.002, 0.710 0.002, 0.679 
Office POI density − 0.003, 0.823 − 0.002, 0.835 0.026, 0.042 ** 0.028, 0.011 ** 0.017, 0.169 0.021, 0.051 * 
Land use mix of four 0.717, 0.497 0.842, 0.369 0.772, 0.454 0.909, 0.320 0.664, 0.517 0.828, 0.350 
POI mix for three 0.234, 0.709 0.236, 0.670 − 0.383, 0.532 − 0.374, 0.491 − 0.615, 0.315 − 0.578, 0.272 
Number of metro exit − 0.067, 0.335 − 0.069, 0.262 − 0.014, 0.831 − 0.016, 0.786 0.006, 0.925 0.002, 0.970 
Number of bus station 0.043, 0.057 * 0.043, 0.027 ** 0.029, 0.190 0.029, 0.134 0.019, 0.387 0.019, 0.312 
Number of bus line 0.001, 0.868 0.001, 0.862 0.007, 0.091 * 0.007, 0.066 * 0.005, 0.222 0.004, 0.256 
Street length − 0.101, 0.241 − 0.087, 0.252 0.063, 0.456 0.083, 0.271 0.048, 0.566 0.082, 0.261 
Number of street intersection 0.013, 0.082 * 0.012, 0.049 ** 0.009, 0.214 0.009, 0.160 0.010, 0.156 0.010, 0.090 * 
Pseudo R2 0.452 0.463 0.692 0.702 0.647 0.671 
Adjusted R2 0.335 — 0.627 — 0.572 — 

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. β = coefficient. p = p value. OLS = Ordinary Least Squares regression. SLM = Spatial Lag Model.  

Table 6 
Regression models to predict weekend temporal metro ridership. (N = 75 stations).  

Explanatory variables Peak-hour boarding Peak-hour alighting Non-peak-hour alighting 

β (p) OLS β (p) SLM β (p) OLS β (p) SLM β (p) OLS β (p) SLM 

Population density 0.088, 0.563 0.063, 0.637 0.057, 0.718 0.063, 0.643 − 0.074, 0.645 − 0.081, 0.556 
Residential land ratio 0.273, 0.762 0.506, 0.531 − 0.008, 0.993 0.260, 0.753 0.169, 0.859 0.546, 0.512 
Commercial land ratio 0.522, 0.701 − 0.096, 0.937 3.030, 0.034 ** 2.515, 0.044 ** 2.364, 0.101 1.760, 0.159 
Office land ratio 1.697, 0.154 2.017, 0.055 * 3.307, 0.009 *** 3.761, 0.001 *** 2.872, 0.025 ** 3.427, 0.001 *** 
Commercial POI density 0.004, 0.456 0.004, 0.322 − 0.003, 0.566 − 0.003, 0.483 0.003, 0.554 0.003, 0.479 
Office POI density − 0.012, 0.349 − 0.011, 0.291 0.016, 0.237 0.020, 0.092 * 0.010, 0.449 0.014, 0.240 
Land use mix of four 0.320, 0.758 0.420, 0.646 0.208, 0.848 0.313, 0.740 0.650, 0.554 0.702, 0.459 
POI mix for three − 0.159, 0.798 − 0.172, 0.751 − 1.117, 0.087 * − 1.123, 0.045 ** − 1.030, 0.118 − 1.001, 0.076 * 
Number of metro exit − 0.037, 0.592 − 0.039, 0.513 0.005, 0.948 − 0.002, 0.967 0.057, 0.426 0.054, 0.380 
Number of bus station 0.035, 0.120 0.035, 0.072 * 0.025, 0.289 0.025, 0.208 0.005, 0.826 0.004, 0.841 
Number of bus line 0.003, 0.464 0.003, 0.427 0.008, 0.081 * 0.007, 0.074 * 0.007, 0.153 0.005, 0.157 
Street length − 0.097, 0.256 − 0.079, 0.294 − 0.011, 0.903 0.011, 0.887 0.008, 0.933 0.035, 0.657 
Number of street intersection 0.013, 0.067 * 0.013, 0.032 ** 0.010, 0.254 0.010, 0.173 0.012, 0.155 0.013, 0.080 * 
Pseudo R2 0.432 0.452 0.635 0.656 0.633 0.661 
Adjusted R2 0.311 — 0.558 — 0.554 — 

Note: * p < 0.1, ** p < 0.05, *** p < 0.01. β = coefficient. p = p value. OLS = Ordinary Least Squares regression. SLM = Spatial Lag Model.  
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characteristics can explain peak-hour alighting ridership better than 
boarding. Office land ratio, number of bus station and number of street 
interaction are positively related to peak-hour boarding ridership. 
Commercial land ratio, office land ratio, office POI density and number 
of bus line are positively related to peak-hour alighting ridership, while 
POI mix is negatively related to it. During non-peak hours, office land 
ratio and number of street intersection are positively related to alighting 
ridership and POI mix is negatively related to it. 

5. Discussion 

Previous studies have inconsistent findings about the associations 
between built environment characteristics around transit stations and 
transit usage (e.g., ridership). The inconsistence is largely due to 
different urban contexts and limited sample size of travel survey data. 
Research focusing on mode choice of TOD such as commuting mode 
share at station level is still scarce. To fill these gaps, we identified 
commuting trips and overall ridership using metro service with smart 
sard data (SCD) in Wuhan, China. The big data-based approach can 
comprehensively depict the majority of metro users’ travel behaviors. 
The outcomes of metro usage are measured from the perspective of 
commuting origin and destination ridership, mode share, and boarding 
and alighting ridership during peak and non-peak hours both on 
weekday and weekend. Built environment characteristics are systemat
ically evaluated based on density, diversity and design. The relationship 
between built environment factors around metro stations and metro 
usage were investigated with linear regression, and spatial lag model to 
mitigate spatial effects. The results demonstrate that some built envi
ronment characteristics were significantly related with metro usage. 

5.1. Density 

Expect for one caveat, our findings largely occur with previous 
findings that urban density in station service area positively impacts 
transit usage (Sung and Oh, 2011; Zhao et al., 2013). 

In this study, density of residential land ratio is positively linked with 
commuting origin ridership in the station area. It is reasonable because 
an area with higher ratio of residential land is more likely to be a resi
dential area for commuters. Higher office land ratio and office POI 
density can predict more commuting destination trips, which can be 
explained by potential employment destinations in these areas. Metro 
commuters tend to commute to office-oriented station area for work. 
Similarly, more office land and office POI is usually linked with higher 
ridership (e.g., daily boarding ridership, peak and non-peak-hour 
alighting ridership). The findings give us a message that metro usage 
is highly correlated with office-oriented station area in Wuhan. The 
same finding was revealed in Nanjing (Zhao et al., 2013). 

However, the impacts of urban density on metro mode share for 
commuting trips are mixed. In areas with higher population density, 
people are less likely to use metro for commuting trips. This finding 
disagree with some studies that verify positive relation between resi
dential density and rail mode share (Loo et al., 2010). One possible 
explanation is that the areas with higher population density are in the 
urban core of Wuhan. People in these areas may less rely on metro 
service due to metro crowdedness and they may have alternative 
transportation options, such as walk, bus or drive for commuting trips. 
On the other hand, the areas with lower population density are often in 
the urban perimeters, and alternative transportation options are either 
infeasible or inconvenience. Hence, commuters in the low-population- 
density areas more rely on metro service. 

5.2. Diversity 

Diversity is another indispensable built environment characteristic 
affects transit usage (Loo et al., 2010; Park et al., 2018). We used land 
use mix and POI mix to measure the degree of diversity within station 
buffer area. However, both land use mix and POI mix have no significant 
associations with metro commuting trips, mode share, and ridership. In 
some cases (e.g., daily boarding, peak and non-peak alighting ridership 
on weekend), POI mix is negatively associated with metro usage. The 
inconsistent findings from this study and others (Arrington and Cervero, 
2008; Jun et al., 2015; Park et al., 2018) may due to the exclusive and 
separated land use zones in Wuhan. Different types of land use, such as, 
office or residential, are often not mixed together. For example, the 
metro ridership in area with sole residential land use can be higher than 
areas with mixed land use. At the same time, diversity may provide more 
destinations for local residents to reach by foot, resulting in less transit 
use (Kamruzzaman et al., 2014). 

5.3. Design 

Design is the third major built environment characteristics affecting 
transit usage (Ewing and Cervero, 2010; Nasri and Zhang, 2014). In this 
study, street intersection density is positively correlated with metro 
usage. Stations with more street intersections in the buffer have more 
commuting origin trips and higher mode share. Street intersections are 
also significantly related overall metro ridership. Other studies support 
the same conclusion (Durning and Townsend, 2015). Wuhan has un
dergone rapid urbanization recently; there are many old and gated 
communities with less street intersections. Such places might generate 
less metro commuters and ridership. It is highly likely that places with 
more street intersections have more middle-class residents who prefer 
metro. Furthermore, places with more street intersections tend to have 
better accessibility to metro stations and hence have higher metro usage. 

In sum, the findings of this research have meaningful implications 
both for TOD planning and built environment design in transit service 
area. The 3Ds framework may exert diverse effects on metro ridership 
and metro mode share in different urban contexts. In this study, we 
found two of Ds, density and design has a positive effect on metro usage, 
while diversity has no effect. Hence, exploring the fine-grained rela
tionship of metro usage and built environment factors around transit 
stations in different urban and social contexts warrants further research 
attention. With the background of rapid TOD planning and imple
mentation in China, policymakers and urban planners should pay great 
attention to the roles of built environment around transit stations to 
maximize transit ridership and reduce auto usage. 

This study also has some limitations. First, only commuting trips 
were identified using a data mining method based on time and fre
quency rules. More sophisticated method should be developed to extract 
metro commuting trips and trips for other activities or purposes, e.g., 
non-commuting trips, leisure activities. Second, metro commuter mode 
share should be operationally calculated by metro commuters divided 
by total commuters in station buffer, while this study replaced it with 
population size aged 19–59, which may cause bias. Future studies 
should implement more accurate method to estimate total commuters in 
station served area. Third, using consistent station buffer to measure 
station catchment area may be biased. For example, it could fail to 
include the people who live outside the buffer but take bus cycle to use 
metro. The station catchment area should be refined in the future. 
Fourth, the socio-demographic attribute of travelers and station served 
area is indispensable in shaping travel behavior. However, due to data 
unavailability, we cannot control for such attributes. Finally, future 
studies should also consider other transportation modes, e.g., walking, 
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buses, private cars to depict the comprehensive relationship between 
built environment characteristics and travel mode choice at station 
level. 

6. Conclusion 

In this study, we measured metro mode share for commuting trips 
and metro ridership with smart card data. The associations between 
metro usage and built environment factors were investigated in Wuhan, 
China. Our study extends previous research by considering the impacts 
of built environment on mode share of commuting trips at station level. 
Our results suggest that population density is negatively associated with 
metro commuting mode share, while street intersection shows a positive 
relationship. Office-oriented urban function and street intersection are 
positively correlated with metro ridership The results of this study can 
benefit both present and future TOD planning to maximize metro 
ridership and commuting mode share with proper urban planning 
strategies. Researchers, policymakers and urban planners should explore 
the fine-grained relationship of metro usage and built environment 
factors in different urban and social contexts. 
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Fig. A1. Scatter plots.  
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